Having weight; heavy; ponderous; as, a weighty
body. [1913 Webster]
Adapted to turn the balance in the mind, or to
convince; important; forcible; serious; momentous. "For sundry
weighty reasons." --Shak. [1913 Webster] Let me have your advice in
a weighty affair. --Swift. [1913 Webster]
Rigorous; severe; afflictive. [R.] "Attend our
weightier judgment." --Shak. [1913 Webster] Syn: Heavy; ponderous;
burdensome; onerous; forcible; momentous; efficacious; impressive;
cogent. [1913 Webster]
Word Net
weighty adj1 having relatively great weight; heavy; "a
weighty load"; "a weighty package" [ant: weightless]
2 of great gravity or crucial import; requiring
serious thought; "grave responsibilities"; "faced a grave decision
in a time of crisis"; "a grievous fault"; "heavy matters of state";
"the weighty matters to be discussed at the peace conference" [syn:
grave, grievous, heavy]
3 weighing heavily on the spirit; causing anxiety
or worry; "weighty problems"
5 powerfully persuasive; "a cogent argument"; "a
telling presentation"; "a weighty argument" [syn: cogent, telling] [also: weightiest, weightier]
Moby Thesaurus
Gargantuan, absolute, adducible, admissible, amplitudinous, ascendant, astronomical, attestative, attestive, authentic, authoritarian, authoritative, authorized, autocratic, awe-inspiring, awesome, based on, big, binding, boundless, bulky, burdensome, certain, charismatic, charming, circumstantial, clothed with authority, cogent, colossal, commanding, competent, conclusive, consequential, considerable, consistent, controlling, convincing, corpulent, cosmic, cumbersome, cumbrous, cumulative, damning, decisive, decorous, demanding, demure, determinative, dignified, documentary, documented, dominant, duly constituted, earnest, effective, effectual, efficacious, elevated, eminent, empowered, enchanting, enormous, estimable, evidential, evidentiary, ex officio, ex parte, exacting, exhausting, exigent, extensive, eye-witness, factual, fat, fatal, fateful, final, firsthand, fleshy, formal, formidable, founded on, frowning, galactic, gigantic, good, governing, grand, grave, great, grievous, grim, grim-faced, grim-visaged, grinding, gross, grounded on, harsh, hearsay, heavy, heavyweight, hefty, hegemonic, hegemonistic, huge, immeasurable, immense, imperative, implicit, important, imposing, incontrovertible, indicative, indisputable, infinite, influential, inspiring, irrefutable, irresistible, just, king-size, large, lawful, leaden, leading, legal, legitimate, lofty, logical, long-faced, magnetic, majestic, mammoth, massive, massy, material, meaningful, mighty, momentous, monocratic, monster, monstrous, monumental, mountainous, moving, no-nonsense, noble, nuncupative, obese, official, onerous, oppressive, outsize, overburdensome, overgrown, overweight, overwhelming, personable, persuasive, ponderous, portentous, portly, potent, powerful, preeminent, prestigious, presumptive, probative, prodigious, prominent, puissant, ranking, reliable, reputable, ruling, sedate, self-consistent, senior, serious, severe, significant, sizable, sober, sober-minded, sobersided, solemn, solid, somber, sound, spacious, staid, stately, stone-faced, stout, straight-faced, strong, stupendous, suasive, sublime, substantial, sufficient, suggestive, superincumbent, superior, supreme, sure, symptomatic, taxing, telling, thoughtful, titanic, totalitarian, tough, tremendous, tyrannous, unsmiling, valid, vast, voluminous, wearing, wearying, well-founded, well-grounded, winningEnglish
Etymology
Pronunciation
-
- Rhymes: -eɪti
Adjective
weighty
Weight and mass
In modern scientific usage, weight and mass are
fundamentally different quantities: mass is an intrinsic property
of matter, whereas weight
is a force that results from the action of gravity on matter: it measures
how strongly gravity pulls on that matter.
However, the recognition of this difference is,
historically, a relatively recent development and in many everyday
situations the word "weight" continues to be used when "mass" is
meant. For example, we say that an object "weighs one kilogram",
even though the kilogram is a unit of mass.
The distinction between mass and weight is
unimportant for many practical purposes because the strength of
gravity is very simliar everywhere on the surface of the Earth. In
such a constant gravitational field, the gravitational force
exerted on an object (its weight) is
directly proportional to its mass. So, if object A weighs, say,
10 times as much as object B, then object A's mass is 10 times that
of object B. This means that an object's mass can be measured
indirectly by its weight (for conversion formulas see
below). For example, when we buy a bag of sugar we can measure
its weight (how hard it presses down on the scales) and be sure
that this will give a good indication of the quantity that we are
actually interested in, which is the mass of sugar in the bag.
Nevertheless, slight variations in the Earth's gravitational field
do exist (see Earth's
gravity). These alter the relationship between weight and mass,
and must be taken into account in high precision weight
measurements that are intended to indirectly measure mass.
The use of "weight" for "mass" also persists in
some scientific terminology – for example, in the chemical terms "atomic
weight", "molecular weight", and "formula weight", rather than the
preferred "atomic mass"
etc.
The difference between mass and force becomes
obvious when:
- objects are compared in different gravitational fields, such as away from the Earth's surface. For example, on the surface of the Moon, gravity is only about one-sixth as strong as on the surface of the Earth. A one-kilogram mass is still a one-kilogram mass (as mass is an intrinsic property of the object) but the downward force due to gravity is only one-sixth of what the object would experience on Earth.
- masses are considered in the context of a lever, such as a cantilever structure or a weighing balance.
- locating the center of gravity of an object (although if the gravitation field is uniform, the center of gravity will coincide with the center of mass).
- an object is submersed in a fluid (for instance, a brick weighs less when placed in water, and helium balloon in the atmosphere appears to have negative weight).
Units of weight
Systems of units of weight (force) and mass have
a tangled history, partly because the distinction was not properly
understood when many of the units first came into use.
SI units
In most modern scientific work, physical quantities are measured in SI units. The SI unit of mass (and hence weight in some everyday senses) is the kilogram. The SI unit of force (and hence weight in the mechanics sense) is the newton (N) – which can also be expressed in SI base units as kg·m/s² (kilograms times metres per second squared).The gravitational force exerted on an object is
proportional to the mass of the object, so it is reasonable to
think of the strength of gravity as measured in terms of force per
unit mass, that is, newtons per kilogram (N/kg). However, the unit
N/kg resolves to m/s²; (metres per second per second), which is the
SI unit of acceleration, and in practice gravitational strength is
usually quoted as an acceleration.
The pound and other non-SI units
In
United States customary units, the pound can be either a unit
of force or a unit of mass. Related units used in some distinct,
separate subsystems of units include the poundal and the slug. The
poundal is defined as the force necessary to accelerate a one-pound
object at 1 ft/s², and is equivalent to about 1/32 of a
pound (force). The slug is defined as the amount of mass that
accelerates at 1 ft/s² when a pound of force is exerted on
it, and is equivalent to about 32 pounds (mass).
The kilogram-force
is a non-SI unit of force, defined as the force exerted by a
one-kilogram mass in standard Earth gravity (equal to 9.80665
newtons exactly). The dyne
is the cgs
unit of force and is not a part of SI, while weights measured in
the cgs unit of mass, the gram, remain a part of SI.
Conversion between weight (force) and mass
To convert between weight (force) and mass we use Newton's second law, F = ma (force = mass × acceleration). Here, F is the force (weight) due to gravity, m is the mass of the object in question, and a is the acceleration due to gravity, on Earth approximately 9.8 m/s² or 32.2 ft/s². In this context the same equation is often written as W = mg, with W standing for weight, and g for the acceleration due to gravity.Sensation of weight
see also apparent weight The weight force that we actually sense is not the downward force of gravity, but the normal force (an upward contact force) exerted by the surface we stand on, which opposes gravity and prevents us falling to the center of the Earth. This normal force, called the apparent weight, is the one that is measured by a spring scale.For a body supported in a stationary position,
the normal force balances the earth's gravitational force, and so
apparent weight has the same magnitude as actual weight.
(Technically, things are slightly more complicated. For example, an
object immersed in water weighs less, according to a spring scale,
than the same object in air; this is due to buoyancy, which opposes the
weight force and therefore generates a smaller normal. These and
other factors are explained further under apparent weight.)
If there is no contact with any surface to
provide such an opposing force then there is no sensation of weight
(no apparent weight). This happens in free-fall, as
experienced by sky-divers (until they approach terminal
velocity) and astronauts in orbit, who feel "weightless" even though their
bodies are still subject to the force of gravity: they're just no
longer resisting it. The experience of having no apparent weight is
also known as microgravity.
A degree of reduction of apparent weight occurs,
for example, in elevators. In an elevator, a spring scale will
register a decrease in a person's (apparent) weight as the elevator
starts to accelerate downwards. This is because the opposing force
of the elevator's floor decreases as it accelerates away underneath
one's feet.
Measuring weight
- Main article: Weighing scale
Weight is commonly measured using one of two
methods. A
spring scale or
hydraulic or pneumatic scale measures weight force (strictly
apparent
weight force) directly. If the intention is to measure mass
rather than weight, then this force must be converted to mass. As
explained above, this calculation depends on the strength of
gravity. Household and other low precision scales that are
calibrated in units of mass (such as kilograms) assume roughly that
standard
gravity will apply. However, although nearly constant, the
apparent or actual strength of gravity does in fact vary very
slightly in different places on the earth (see standard
gravity, physical
geodesy, gravity
anomaly and gravity). This means that same
object (the same mass) will exert a slightly different weight force
in different places. High precision spring scales intended to
measure mass must therefore be calibrated specifically according
their location on earth.
Mass may also be measured with a balance,
which compares the item in question to others of known mass. This
comparison remains valid whatever the local strength of gravity. If
weight force, rather than mass, is required, then this can be
calculated by multiplying mass by the acceleration due to gravity –
either standard gravity (for everyday work) or the precise local
gravity (for precision work).
Gross weight is a term that generally is found in
commerce or trade applications, and refers to the gross or total
weight of a product and its packaging. Conversely, net weight
refers to the intrinsic weight of the product itself, discounting
the weight of packaging or other materials.
Relative weights on the Earth, other planets and the Moon
The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the solar system, and Pluto. The “surface” is taken to mean the cloud tops of the gas giants (Jupiter, Saturn, Uranus and Neptune). For the Sun, the surface is taken to mean the photosphere. The values in the table have not been de-rated for the centrifugal effect of planet rotation (and cloud-top wind speeds for the gas giants) and therefore, generally speaking, are similar to the actual gravity that would be experienced near the poles.References
See also
weighty in Afrikaans: Gewig
weighty in Arabic: وزن
weighty in Asturian: Pesu
weighty in Bengali: ওজন (ভার)
weighty in Min Nan: Tāng-liōng
weighty in Belarusian: Вага
weighty in Bosnian: Težina
weighty in Bulgarian: Тегло
weighty in Catalan: Pes
weighty in Czech: Váha
weighty in Danish: Vægt (fysik)
weighty in German: Gewicht
weighty in Estonian: Kaal
weighty in Spanish: Peso
weighty in Esperanto: Pezo
weighty in Basque: Pisu
weighty in Persian: وزن
weighty in French: Poids
weighty in Galician: Peso
weighty in Hindi: भार
weighty in Korean: 무게
weighty in Croatian: Težina
weighty in Ido: Pezo
weighty in Indonesian: Berat
weighty in Icelandic: Þyngd
weighty in Italian: Forza peso
weighty in Hebrew: משקל (פיזיקה)
weighty in Latvian: Svars
weighty in Lithuanian: Svoris
weighty in Hungarian: Súly
weighty in Macedonian: Тежина
weighty in Malayalam: ഭാരം
weighty in Malay (macrolanguage): Berat
weighty in Dutch: Gewicht
weighty in Japanese: 重さ
weighty in Norwegian: Tyngde
weighty in Polish: Ciężar
weighty in Portuguese: Peso
weighty in Kölsch: Jeweech
weighty in Romanian: Greutate
weighty in Quechua: Llasaq kay
weighty in Russian: Вес
weighty in Sicilian: Pisu
weighty in Simple English: Weight
weighty in Slovak: Gravitačná hmotnosť
weighty in Slovenian: Teža
weighty in Serbian: Тежина
weighty in Finnish: Paino
weighty in Swedish: Tyngd
weighty in Thai: น้ำหนัก
weighty in Vietnamese: Lực hấp
dẫn#Tr.E1.BB.8Dng_l.E1.BB.B1c
weighty in Turkish: Ağırlık
weighty in Ukrainian: Вага
weighty in Yiddish: וואג
weighty in Chinese: 重量