User Contributed Dictionary
Noun
silicium- , silicon
Extensive Definition
distinguish Silicone Silicon (
or /ˈsɪlɪkɒn/, lang-la silicium) is the chemical
element that has the symbol Si and atomic
number 14. A tetravalent metalloid, silicon is less
reactive than its chemical analog carbon. As the eighth most common
element in the universe by mass, silicon occasionally occurs as the
pure free element in nature, but is more widely distributed in
dusts, planetoids and planets as various forms of silicon
dioxide (silica) or silicates. On Earth, silicon is
the second most abundant element (after oxygen) in the crust, making up
25.7% of the crust by mass.
Silicon has many industrial uses. Elemental
silicon is the principal component of most semiconductor devices,
most importantly integrated
circuits or microchips. Silicon is widely used in
semiconductors because it remains a semiconductor at higher
temperatures than the semiconductor germanium and because its
native oxide is
easily grown in a furnace and forms a better
semiconductor/dielectric interface than any other material.
In the form of silica and silicates, silicon
forms useful glasses,
cements, and ceramics. It is also a
constituent of silicones, a class-name for
various synthetic plastic substances made of silicon, oxygen,
carbon and hydrogen, often confused with silicon itself.
Silicon is an essential element in biology,
although only tiny traces of it appear to be required by animals.
It is much more important to the metabolism of plants, particularly
many grasses, and silicic acid
(a type of silica) forms the basis of the striking array of
protective shells of the microscopic diatoms.
Notable characteristics
The outer electron orbitals (half filled subshell holding up to eight electrons) have the same structure as in carbon and the two elements are sometimes similar chemically. Even though it is a relatively inert element, silicon still reacts with halogens and dilute alkalis, but most acids (except for some hyper-reactive combinations of nitric acid and hydrofluoric acid) do not affect it. Having four bonding electrons however gives it, like carbon, many opportunities to combine with other elements or compounds under the right circumstances.Both silicon and carbon are semiconductors,
readily either donating or sharing their four outer electrons
allowing many different forms of chemical bonding. Pure silicon has
a negative temperature coefficient of
resistance,
since the number of free charge carriers increases with
temperature. The electrical resistance of single
crystal silicon significantly changes under the application of
mechanical stress due to the piezoresistive
effect.
In its crystalline form, pure silicon
has a gray color and a metallic luster. It is similar to glass in
that it is rather strong, very brittle, and prone to
chipping.
History
Silicon was first identified by Antoine Lavoisier in 1787 as a component of the Latin , or silicis (meaning what were more generally termed "the flints" or "Hard Rocks" during the Early Modern era where nowadays as we would say "silica" or "silicates"), and was later mistaken by Humphry Davy in 1800 for a compound. In 1811 Gay-Lussac and Thénard probably prepared impure amorphous silicon through the heating of potassium with silicon tetrafluoride. It was first isolated as an element by Berzelius in 1823. In 1824, Berzelius prepared amorphous silicon using approximately the same method as Gay-Lussac. Berzelius also purified the product by repeatedly washing it.Occurrence
Measured by mass, silicon makes up 25.7% of the Earth's crust and is the second most abundant element on Earth, after oxygen. Pure silicon crystals are only occasionally found in nature; they can be found as inclusions with gold and in volcanic exhalations. Silicon is usually found in the form of silicon dioxide (also known as silica), and silicate.Silica occurs in minerals consisting of
(practically) pure silicon
dioxide in different crystalline forms. Sand, amethyst, agate, quartz, rock crystal, chalcedony, flint, jasper, and opal are some of the forms in which
silicon dioxide appears. (They are known as "lithogenic",
as opposed to "biogenic",
silicas.)
Silicon also occurs as silicates (various minerals
containing silicon, oxygen and one or another metal), for example
feldspar. These
minerals occur in clay,
sand and various types of
rock such
as granite and sandstone. Asbestos, feldspar, clay, hornblende, and mica are a few of the many silicate
minerals.
Silicon is a principal component of aerolites, which are a class of
meteoroids, and also
is a component of tektites, which are a natural
form of glass.
See also :Category:Silicate
minerals
Isotopes
Silicon has numerous known isotopes, with mass numbers ranging from 22 to 44. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable; 32Si is a radioactive isotope produced by argon decay. Its half-life has been determined to be approximately 170 years (0.21 MeV), and it decays by beta - emission to 32P (which has a 14.28 day half-life ) and then to 32S.Compounds
For examples of silicon compounds see silicon dioxide (SiO2), silicic acid (H4SiO4), silicates, silicate minerals, silicides, silicon ceramics like silicon carbide (SiC) and silicon nitride (Si3N4), silicon halides like silicon tetrachloride (SiCl4) and silicon tetrafluoride (SiF4), trichlorosilane (HSiCl3), silanes H2(SiH2)n, organosilicons and silicones.See also :Category:Silicon
compounds
Applications
As the second most abundant element in the earth's crust, silicon is vital to the construction industry as a principal constituent of natural stone, glass, concrete and cement. Silicon's greatest impact on the modern world's economy and lifestyle has resulted from silicon wafers used as substrates in the manufacture of discrete electronic devices such as power transistors, and in the development of integrated circuits such as computer chips.Alloys
The largest application of pure silicon (metallurgical grade silicon), representing about 55% of the world consumption, is in the manufacture of aluminium-silicon alloys to produce cast parts, mainly for the automotive industry. Silicon is an important constituent of electrical steel, modifying its resistivity and ferromagnetic properties. Silicon is added to molten cast iron as ferrosilicon or silicocalcium alloys to improve its performance in casting thin sections, and to prevent the formation of cementite at the surface.In electronic applications
Pure silicon is used to produce ultra-pure silicon wafers used in the semiconductor industry, in electronics and in photovoltaic applications. Ultra-pure silicon can be doped with other elements to adjust its electrical response by controlling the number and charge (positive or negative) of current carriers. Such control is necessary for transistors, solar cells, integrated circuits, microprocessors, semiconductor detectors and other semiconductor devices which are used in electronics and other high-tech applications. In Photonics, silicon can be used as a continuous wave Raman laser medium to produce coherent light, though it is ineffective as a light source. Hydrogenated amorphous silicon is used in the production of low-cost, large-area electronics in applications such as LCDs, and of large-area, low-cost thin-film solar cells.Silicones
The second largest application of silicon (about 40% of world consumption) is as a raw material in the production of silicones, compounds containing silicon-oxygen and silicon-carbon bonds that have the capability to acting as bonding intermediates between glass and organic compounds, and to form polymers with useful properties such as impermeability to water, flexibility and resistance to chemical attack. Silicones are used in waterproofing treatments, molding compounds and mold-release agents, mechanical seals, high temperature greases and waxes, caulking compounds and even in applications as diverse as breast implants, explosives and pyrotechnics.- Construction: Silicon dioxide or silica in the form of sand and clay is an important ingredient of concrete and brick and is also used to produce Portland cement.
- Pottery/Enamel is a refractory material used in high-temperature material production and its silicates are used in making enamels and pottery.
- Glass: Silica from sand is a principal component of glass. Glass can be made into a great variety of shapes and with many different physical properties. Silica is used as a base material to make window glass, containers, insulators, and many other useful objects.
- Abrasives: Silicon carbide is one of the most important abrasives.
- Silly Putty was originally made by adding boric acid to silicone oil. Now name-brand Silly Putty also contains significant amounts of elemental silicon. (Silicon binds to the silicone and allows the material to bounce 20% higher.)
See also :Category:Silicon
compounds
Production
Silicon is commercially prepared by the reaction of high-purity silica with wood, charcoal, and coal, in an electric arc furnace using carbon electrodes. At temperatures over 1900 °C, the carbon reduces the silica to silicon according to the chemical equation- SiO2 + C → Si + CO2.
- SiO2 + 2C → Si + 2CO.
Liquid silicon collects in the bottom of the
furnace, and is then drained and cooled. The silicon produced via
this process is called metallurgical grade silicon and is at least
98% pure. Using this method, silicon carbide, SiC, can form.
However, provided the amount of SiO2 is kept high, silicon carbide
may be eliminated, as explained by this equation:
- 2 SiC + SiO2 → 3 Si + 2 CO.
In 2005, metallurgical grade silicon cost about
$
0.77 per pound ($1.70/kg).
It has been reported in recent years that, by
molten salt electrolysis, pure silicon can be directly extracted
from solid silica and this new electrolysis method, known as the
FFC Cambridge Process, has the potential to produce directly the
solar grade silicon without any CO2 emission at much lower energy
consumption.
Purification
The use of silicon in semiconductor devices demands a much greater purity than afforded by metallurgical grade silicon. Historically, a number of methods have been used to produce high-purity silicon.Physical methods
Early silicon purification techniques were based on the fact that if silicon is melted and re-solidified, the last parts of the mass to solidify contain most of the impurities. The earliest method of silicon purification, first described in 1919 and used on a limited basis to make radar components during World War II, involved crushing metallurgical grade silicon and then partially dissolving the silicon powder in an acid. When crushed, the silicon cracked so that the weaker impurity-rich regions were on the outside of the resulting grains of silicon. As a result, the impurity-rich silicon was the first to be dissolved when treated with acid, leaving behind a more pure product.In zone
melting, also called zone refining, the first silicon
purification method to be widely used industrially, rods of
metallurgical grade silicon are heated to melt at one end. Then,
the heater is slowly moved down the length of the rod, keeping a
small length of the rod molten as the silicon cools and
re-solidifies behind it. Since most impurities tend to remain in
the molten region rather than re-solidify, when the process is
complete, most of the impurities in the rod will have been moved
into the end that was the last to be melted. This end is then cut
off and discarded, and the process repeated if a still higher
purity is desired.
Chemical methods
Today, silicon is purified by converting it to a silicon compound that can be more easily purified than in its original state, and then converting that silicon element back into pure silicon. Trichlorosilane is the silicon compound most commonly used as the intermediate, although silicon tetrachloride and silane are also used. When these gases are blown over silicon at high temperature, they decompose to high-purity silicon.At one time, DuPont produced
ultra-pure silicon by reacting silicon tetrachloride with
high-purity zinc vapors at
950 °C, producing silicon according to the chemical equation
- SiCl4 + 2 Zn → Si + 2 ZnCl2.
However, this technique was plagued with
practical problems (such as the zinc
chloride byproduct solidifying and clogging lines) and was
eventually abandoned in favor of the Siemens process.
In the Siemens process, high-purity silicon rods
are exposed to trichlorosilane at 1150 °C. The trichlorosilane gas
decomposes and deposits additional silicon onto the rods, enlarging
them according to chemical
reactions like
- 2 HSiCl3 → Si + 2 HCl + SiCl4.
Silicon produced from this and similar processes
is called polycrystalline
silicon. Polycrystalline silicon typically has impurity levels
of less than 10−9.
In 2006
REC announced construction of a plant based on fluidized bed
technology using silane.
- 3SiCl4 + Si + 2H2 → 4HSiCl3
- 4HSiCl3 → 3SiCl4 + SiH4
- SiH4 → Si + 2H2
- 4HSiCl3 → 3SiCl4 + SiH4
Crystallization
Silicon, like carbon and other group IV
elements form face-centered diamond
cubic crystal
structure. Silicon, in particular, forms a face-centered
cubic structure with a lattice spacing of 0.5430710 nm.
The majority of silicon crystals grown for device
production are produced by the Czochralski
process, (CZ-Si) since it is the cheapest method available and
it is capable of producing large size crystals. However, silicon
single-crystals grown by the Czochralski method contain impurities
since the crucible
which contains the melt dissolves. For certain electronic devices,
particularly those required for high power applications, silicon
grown by the Czochralski method is not pure enough. For these
applications, float-zone
silicon (FZ-Si) can be used instead. It is worth mentioning
though, in contrast with CZ-Si method in which the seed is dipped
into the silicon melt and the growing crystal is pulled upward, the
thin seed crystal in the FZ-Si method sustains the growing crystal
as well as the polysilicon rod from the bottom. As a result, it is
difficult to grow large size crystals using the float-zone method.
Today, all the dislocation-free silicon crystals used in
semiconductor industry with diameter 300mm or larger are grown by
the Czochralski method with purity level significantly
improved.
Different forms of silicon
One can notice the color change in silicon
nanopowder. This is caused by the quantum effects which occur in
particles of nanometric dimensions. See also Potential
well, Quantum dot,
and Nanoparticle.
Silicon-based life
see also Alternative biochemistry Since silicon is similar to carbon, particularly in its valency, some people have proposed the possibility of silicon-based life. One main detraction for silicon-based life is that unlike carbon, silicon does not have the tendency to form double and triple bonds.Although there are no known forms of life that
rely entirely on silicon-based chemistry, some use silica for
specific functions. The polycystine radiolaria and diatoms have skeletons of
opaline silicon dioxide,
and the Hexactinellid
sponges secrete spicules made of silicon
dioxide. These forms of silicon dioxide are known as biogenic
silica. Silicate bacteria use silicates in their metabolism.
Life as we know it could not have developed based
on a silicon biochemistry. The main reason for this fact is that
life
on Earth depends on the carbon
cycle: autotrophic entities use
carbon dioxide to synthesize organic compounds with carbon, which
is then used as food by heterotrophic entities,
which produce energy and carbon dioxide from these compounds. If
carbon was to be replaced with silicon, there would be a need for a
silicon cycle. However, silicon dioxide precipitates in aqueous
systems, and cannot be transported among living beings by common
biological means.
As such, another solvent would be necessary to
sustain silicon-based life forms; it would be difficult (if not
impossible) to find another common compound with the unusual
properties of water which make it an ideal solvent for carbon-based
life. Larger silicon compounds analogous to common hydrocarbon chains (silanes) are also generally
unstable owing to the larger atomic radius of silicon and the
correspondingly weaker silicon-silicon bond; silanes decompose
readily and often violently in the presence of oxygen making them unsuitable for
an oxidizing atmosphere such as our own. Silicon also does not
readily participate in pi-bonding (the
second and third bonds in triple bonds and double bonds are
pi-bonds) as its p-orbital
electrons experience greater shielding and are less able to take on
the necessary geometry. Furthermore, although some silicon rings
(cyclosilanes)
analogous to common the cycloalkanes formed by
carbon have been synthesized, these are largely unknown. Their
synthesis suffers from the difficulties inherent in producing any
silane compound, whereas carbon will readily form five-, six-, and
seven-membered rings by a variety of pathways (the Diels-Alder
reaction is one naturally-occurring example), even in the
presence of oxygen. Silicon's inability to readily form long silane
chains, multiple bonds, and rings severely limits the diversity of
compounds that can be synthesized from it. Under known conditions,
silicon chemistry simply cannot begin to approach the diversity of
organic
chemistry, a crucial factor in carbon's role in biology.
However, silicon-based life could be construed as
being life which exists under a computational substrate. This
concept is yet to be explored in mainstream technology but receives
ample coverage by sci-fi authors.
A. G.
Cairns-Smith has proposed that the first living organisms to
exist were forms of clay minerals—which were probably based around
the silicon atom.
In popular culture
Because silicon is an important element in
semiconductors and high-tech devices, the high-tech region of
Silicon
Valley, California is
named after this element. Other geographic locations with
connections to the industry have since characterized themselves as
siliconia as
well.
See also
References
External links
silicium in Afrikaans: Silikon
silicium in Arabic: سليكون
silicium in Asturian: Siliciu
silicium in Belarusian: Крэмній
silicium in Bosnian: Silicijum
silicium in Bulgarian: Силиций
silicium in Catalan: Silici
silicium in Czech: Křemík
silicium in Corsican: Siliciu
silicium in Welsh: Silicon
silicium in Danish: Silicium
silicium in German: Silicium
silicium in Estonian: Räni
silicium in Modern Greek (1453-): Πυρίτιο
silicium in Spanish: Silicio
silicium in Esperanto: Silicio
silicium in Basque: Silizio
silicium in Persian: سیلیسیوم
silicium in French: Silicium
silicium in Friulian: Silici
silicium in Irish: Sileacan
silicium in Manx: Shillagon
silicium in Galician: Silicio
silicium in Gujarati: સિલિકોન
silicium in Korean: 규소
silicium in Armenian: Սիլիցիում
silicium in Hindi: सिलिकॉन
silicium in Croatian: Silicij
silicium in Ido: Siliko
silicium in Indonesian: Silikon
silicium in Icelandic: Kísill
silicium in Italian: Silicio
silicium in Hebrew: צורן
silicium in Haitian: Silisyòm
silicium in Kurdish: Sîlîsyûm
silicium in Latin: Silicium
silicium in Latvian: Silīcijs
silicium in Luxembourgish: Silizium
silicium in Lithuanian: Silicis
silicium in Lojban: cancmu
silicium in Hungarian: Szilícium
silicium in Macedonian: Силициум
silicium in Malayalam: സിലിക്കണ്
silicium in Maori: Takawai
silicium in Marathi: सिलिकॉन
silicium in Malay (macrolanguage): Silikon
silicium in Mongolian: Цахиур
silicium in Dutch: Silicium
silicium in Japanese: ケイ素
silicium in Norwegian: Silisium
silicium in Norwegian Nynorsk: Silisium
silicium in Occitan (post 1500): Silici
silicium in Uzbek: Kremniy
silicium in Low German: Silizium
silicium in Polish: Krzem
silicium in Portuguese: Silício
silicium in Kölsch: Silizium
silicium in Romanian: Siliciu
silicium in Quechua: Ullayayaq
silicium in Russian: Кремний
silicium in Sicilian: Siliciu
silicium in Simple English: Silicon
silicium in Slovak: Kremík
silicium in Slovenian: Silicij
silicium in Serbian: Силицијум
silicium in Serbo-Croatian: Silicij
silicium in Finnish: Pii (alkuaine)
silicium in Swedish: Kisel
silicium in Tamil: சிலிக்கான்
silicium in Thai: ซิลิคอน
silicium in Vietnamese: Silic
silicium in Tajik: Силитсий
silicium in Turkish: Silisyum
silicium in Ukrainian: Кремній
silicium in Contenese: 矽
silicium in Chinese: 硅