Dictionary Definition
radium n : an intensely radioactive metallic
element that occurs in minute amounts in uranium ores [syn:
Ra, atomic
number 88]
User Contributed Dictionary
Derived terms
- eka-radium
- radium A
- radium B
- radium beam
- radium bomb
- radium bromide
- radium burn
- radium C
- radium C', radium C1
- radium C'', radium C2
- radium chloride
- radium clock
- radium D
- radium D1, radium E
- radium emanation
- radium F
- radium fluoride
- radium G
- radium hydroxide
- radium iodide
- radiumise, radiumize
- radium needle
- radium oxide
- radium plaque
- radium sulfate, radium sulphate
- radium therapy
- radon
Related terms
Translations
- Arabic: (rá:diyum)
- Armenian: ռադիում (ŕadium)
- Breton: radiom
- Bulgarian: радий
- Chinese: 鐳 (léi)
- Chinese Cantonese: 鐳 (lui4)
- Croatian: radij
- Esperanto: radiumo
- Estonian: raadium
- French: radium
- Georgian: რადიუმი (radiumi)
- German: Radium
- Hebrew: רדיום (radiyum)
- Italian: radio
- Japanese: ラジウム (rajiumu), ラディウム (radiumu)
- Korean: 라듐 (radyum)
- Persian: (radiyum)
- Polish: rad
- Portuguese: rádio
- Romanian: radiu
- Russian: радий
- Spanish: radio
- Tamil: கருகன் (karugan)
- Thai: (rēdiam)
- Turkish: radyum
- Vietnamese: rađi
Finnish
Noun
Extensive Definition
Radium () is a radioactive chemical
element which has the symbol Ra and atomic
number 88. Its appearance is almost pure white, but it readily
oxidizes on exposure to
air, turning black. Radium is an alkaline
earth metal that is found in trace amounts in uranium ores. It is extremely
radioactive. Its
most stable isotope, ,
has a half-life of 1602
years and decays into radon gas.
Notable characteristics
The heaviest of the alkaline earth metals, radium is intensely radioactive and resembles barium in its chemical behavior. This metal is found in tiny quantities in the uranium ore pitchblende, and various other uranium minerals. Radium preparations are remarkable for maintaining themselves at a higher temperature than their surroundings, and for their radiations, which are of three kinds: alpha particles, beta particles, and gamma rays. Radium also produces neutrons when mixed with beryllium.When freshly prepared, pure radium metal is
brilliant white, but blackens when exposed to air (probably due to
nitride formation).
Radium is luminescent (giving a faint
blue color), reacts violently with water and oil to form radium
hydroxide and is slightly more volatile than barium. The normal phase of
radium is a solid.
Applications
Some of the few practical uses of radium are derived from its radioactive properties. More recently discovered radioisotopes, such as and , are replacing radium in even these limited uses because several of these isotopes are more powerful emitters, safer to handle, and available in more concentrated form.Historical uses
Radium was formerly used in self-luminous paints for watches, nuclear panels, aircraft switches, clocks, and instrument dials. More than 100 former watch dial painters who used their lips to shape the paintbrush died from the radiation from the radium that had become stored in their bones. Soon afterward, the adverse effects of radioactivity became widely known. Radium was still used in dials as late as the 1950s. Although tritium's beta radiation is potentially dangerous if ingested, it has replaced radium in these applications.During the 1930s it was found that workers'
exposure to radium by handling luminescent paints caused
serious health effects which included sores, anemia and bone cancer.
This use of radium was stopped soon afterward. This is because
radium is treated as calcium by the body, and
deposited in the bones, where radioactivity degrades marrow and
can mutate bone cells. The litigation and ultimate deaths of five
"Radium
Girl" employees who had used radium-based luminous
paints on the dials of watches and clocks had a significant
impact on the formulation of occupational
disease labor
law.
Radium was also put in some foods for taste and
as a preservative, but also exposed many people to radiation.
Radium was once an additive in products like toothpaste, hair
creams, and even food items due to its supposed curative powers.
Such products soon fell out of vogue and were prohibited by
authorities in many countries, after it was discovered they could
have serious adverse health effects. (See for instance Radithor.)
Spas
featuring radium-rich water are still occasionally touted as
beneficial, such as those in Misasa,
Tottori, Japan.
Radium (usually in the form of radium
chloride) is used in medicine to produce radon gas which in turn is used as
a cancer treatment. The
isotope is currently under investigation for use in medicine as cancer treatment of bone metastasis.
History
Radium (Latin radius, ray) was discovered by Marie Skłodowska-Curie and her husband Pierre in 1898 in pitchblende from North Bohemia, in the Czech Republic (area around Jáchymov). While studying pitchblende the Curies removed uranium from it and found that the remaining material was still radioactive. They then separated out a radioactive mixture consisting mostly of barium which gave a brilliant green flame color and crimson carmine spectral lines which had never been documented before. The Curies announced their discovery to the French Academy of Sciences on 26 December 1898.In 1902, radium was isolated as a pure metal by Curie and André-Louis
Debierne through the electrolysis of a pure
radium chloride
solution by using a mercury
cathode and distilling in an atmosphere
of hydrogen gas.
Historically the decay products of radium were
known as radium A, B, C, etc. These are now known to be isotopes of
other elements as follows:
One unit for radioactivity, the non-SI curie, is based on the
radioactivity of 226Ra (see Radioactivity).
Occurrence
Radium is a decay product of uranium and is therefore found in all uranium-bearing ores. Radium was originally acquired from pitchblende ore from Joachimsthal, Bohemia (One metric ton of pitchblende yields 0.0001 grams of radium). Carnotite sands in Colorado provide some of the element, but richer ores are found in the Democratic Republic of the Congo and the Great Lakes area of Canada, and can also be extracted from uranium processing waste. Large uranium deposits are located in Ontario, New Mexico, Utah, Virginia, Australia, and in other places.Compounds
Its compounds color flames crimson carmine (rich red or crimson color with a shade of purple) and give a characteristic spectrum. Due to its geologically short half life and intense radioactivity, radium compounds are quite rare, occurring almost exclusively in uranium ores.- radium fluoride (RaF2)
- radium chloride (RaCl2)
- radium bromide (RaBr2)
- radium iodide (RaI2)
- radium oxide (RaO)
- radium nitride (Ra3N2)
See also radium
compounds.
Isotopes
Radium has 25 different known isotopes, four of which are found in nature, with 226Ra being the most common. 223Ra, 224Ra, 226Ra and 228Ra are all generated in the decay of either U or Th. 226Ra is a product of 238U decay, and is the longest-lived isotope of radium with a half-life of 1602 years; next longest is 228Ra, a product of 232Th breakdown, with a half-life of 6.7 years.Radioactivity
Radium is over one million times more radioactive than the same mass of uranium. Its decay occurs in at least seven stages; the successive main products have been studied and were called radium emanation or exradio (this is radon), radium A (polonium), radium B (lead), radium C (bismuth), etc. Radon is a heavy gas and the later products are solids. These products are themselves radioactive elements, each with an atomic weight a little lower than its predecessor.Radium loses about 1% of its activity in 25
years, being transformed into elements of lower atomic weight with
lead being the final
product of disintegration.
The SI unit of radioactivity is the becquerel (Bq), equal to one
disintegration per second. The curie is a non-SI unit defined as
that amount of radioactivity which has the same disintegration rate
as 1 gram of Ra-226 (3.7 x 1010 disintegrations per second, or 37
GBq).
Safety
Handling of radium has been blamed for Marie Curie's premature death.- Radium is highly radioactive and its decay product, radon gas, is also radioactive. Since radium is chemically similar to calcium, it has the potential to cause great harm by replacing it in bones. Inhalation, injection, ingestion or body exposure to radium can cause cancer and other disorders. Stored radium should be ventilated to prevent accumulation of radon.
- Emitted energy from the decay of radium ionizes gases, affects photographic plates, causes sores on the skin, and produces many other detrimental effects.
Further reading
- Scientific American (Macklis RM, The great radium scandal. Sci.Am. 1993 Aug: 269(2):94-99)
- Clark, Claudia. (1987). Radium Girls: Women and Industrial Health Reform, 1910-1935. University of North Carolina Press. ISBN 0-8078-4640-6.
- Ken Silverstein, Harper's Magazine, November 1998; The radioactive boy scout: when a teenager attempts to build a breeder reactor - case of David Hahn who managed to secure materials and equipment from businesses and information from government officials to develop an atomic energy radiation project for his Boy Scout merit-badge.
- Decay chains (with some examples including Radium)
- Radium Girls
References
- Guide to the Elements - Revised Edition
External links
- WebElements.com - Radium (also used as a reference)
- Lateral Science - Radium Discovery
- Photos of Radium Water Bath in Oklahoma
- NLM Hazardous Substances Databank – Radium, Radioactive
radium in Tosk Albanian: Radium
radium in Arabic: راديوم
radium in Bengali: রেডিয়াম
radium in Belarusian: Радый
radium in Bosnian: Radijum
radium in Bulgarian: Радий
radium in Catalan: Radi (element)
radium in Czech: Radium
radium in Corsican: Radiu
radium in Danish: Radium
radium in German: Radium
radium in Estonian: Raadium
radium in Modern Greek (1453-): Ράδιο
radium in Spanish: Radio (elemento)
radium in Esperanto: Radiumo
radium in Basque: Erradio (elementua)
radium in French: Radium
radium in Friulian: Radi
radium in Manx: Raadjum
radium in Galician: Radio (elemento)
radium in Korean: 라듐
radium in Armenian: Ռադիում
radium in Croatian: Radij
radium in Ido: Radiumo
radium in Indonesian: Radium
radium in Interlingua (International Auxiliary
Language Association): Radium
radium in Icelandic: Radín
radium in Italian: Radio (elemento)
radium in Hebrew: רדיום
radium in Javanese: Radium
radium in Swahili (macrolanguage): Radi
radium in Haitian: Radyòm
radium in Kurdish: Radyûm
radium in Latin: Radium
radium in Latvian: Rādijs
radium in Luxembourgish: Radium
radium in Lithuanian: Radis
radium in Lojban: dircyjinme
radium in Hungarian: Rádium
radium in Malayalam: റേഡിയം
radium in Maori: Konuruke
radium in Dutch: Radium
radium in Japanese: ラジウム
radium in Norwegian: Radium
radium in Norwegian Nynorsk: Radium
radium in Polish: Rad (pierwiastek)
radium in Portuguese: Rádio (elemento
químico)
radium in Romanian: Radiu
radium in Russian: Радий
radium in Sicilian: Ràdiu (elementu)
radium in Simple English: Radium
radium in Slovak: Rádium
radium in Slovenian: Radij
radium in Serbian: Радијум
radium in Serbo-Croatian: Radijum
radium in Finnish: Radium
radium in Swedish: Radium
radium in Tamil: ரேடியம்
radium in Thai: เรเดียม
radium in Turkish: Radyum
radium in Ukrainian: Радій
radium in Chinese: 镭
Synonyms, Antonyms and Related Words
acid,
actual cautery, americium, astatine, atomic cocktail,
berkelium, brand, brand iron, branding iron,
caustic, cauter, cauterant, cauterizer, cautery, cobalt, corrosive, curium, einsteinium, electrocautery, escharotic, fermium, francium, hahnium, hot iron, lunar
caustic, mendelevium, mordant, moxa, neptunium, plutonium, polonium, potential cautery,
promethium, protactinium, radiocalcium, radiocarbon, radioelement, radioiodine, radioisotope, radiosodium, radon, tagged element, technetium, tracer, uranium