Dictionary Definition
puberty n : the time of life when sex glands
become functional [syn: pubescence]
User Contributed Dictionary
English
Etymology
From the pubertas, (“adulthood”), equivalent to puber, (“downy, adult”) + -tas, (Latin ending denoting state [of]).Noun
- the age at which a person is first capable of sexual reproduction
Related terms
Translations
- Finnish: murrosikä, puberteetti
- German: Pubertät , Geschlechtsreife
- Spanish: pubertad
Extensive Definition
Puberty refers to the process of physical changes
by which a child's
body becomes an adult body capable of reproduction. Puberty is
initiated by hormone
signals from the brain to the gonads (the ovaries and testes). In response, the gonads
produce a variety of hormones that stimulate the growth, function,
or transformation of brain, bones, muscle, skin, breasts, and reproductive
organs.
Growth accelerates in the first half of puberty and stops at
the completion of puberty. Before puberty, body differences between
boys and girls are almost entirely restricted to the genitalia. During puberty,
major differences of size, shape, composition, and function develop
in many body structures and systems. The most obvious of these are
referred to as
secondary sex characteristics.
In a strict sense, the term puberty (and this
article) refers to the bodily changes of sexual maturation rather than the
psychosocial and cultural aspects of adolescent development.
Adolescence is
the period of psychological and social transition between childhood
and adulthood. Adolescence
largely overlaps the period of puberty, but its boundaries are less
precisely defined and it refers as much to the psychosocial and
cultural characteristics of development during the teen years as to
the physical changes of puberty. Puberty is the change of a girl to
a woman and a boy to a man.
Differences between male and female puberty
Two of the most significant differences between puberty in girls and puberty in boys are the age at which it begins, and the major sex steroids involved.Although there is a wide range of normal ages, on
average, girls begin the process of puberty about 1-2 years earlier
than boys (with average ages of nine to fourteen for girls and ten
to seventeen for boys), and reach completion in a shorter time.
Girls attain adult height and reproductive maturity about 4 years
after the first physical changes of puberty appear. In contrast,
boys accelerate more slowly but continue to grow for about 6 years
after the first visible pubertal changes.
The hormone that dominates female development is
estradiol, an estrogen. While estradiol
promotes growth of breasts and uterus, it is also the principal
hormone driving the pubertal growth spurt and epiphyseal maturation and
closure. Estradiol levels rise earlier and reach higher levels in
women than in men.
In males, testosterone, an androgen, is the principal sex
steroid. While testosterone produces all the male changes
characterized as virilization, a substantial
product of testosterone metabolism in males is estradiol, though
levels rise later and more slowly than in girls. The male growth
spurt also begins later, accelerates more slowly, and lasts longer
before the epiphyses fuse. Although boys are 2 cm shorter than
girls before puberty begins, adult men are on average about 13 cm
(5.2 inches) taller than women. Most of this sex difference in
adult heights is attributable to a later onset of the growth spurt
and a slower progression to completion, a direct result of the
later rise and lower adult male levels of estradiol.
Puberty onset
Onset is associated with high GnRH pulsing, which precedes the rise in sex hormones, LH and FSH. Exogenous GnRH pulses cause the onset of puberty.Essential Reproduction, M Johnson, Blackwell Publishers, 6Rev Ed edition (29 Jun 2007) Brain tumors which increase GnRH output may also lead to premature puberty.Physical changes in males
Testicular size, function, and fertility
In boys, testicular enlargement is the first physical manifestation of puberty (and is termed gonadarche). Testes in prepubertal boys change little in size from about 1 year of age to the onset of puberty, averaging about 2–3 cc in volume and about 1.5-2 cm in length. Testicular size continues to increase throughout puberty, reaching maximal adult size about 6 years later. While 18-20 cc is reportedly an average adult size, there is wide variation in the normal population. The testes have two primary functions: to produce hormones and to produce sperm. The Leydig cells produce testosterone (as described below), which in turn produces most of the changes of male sexual maturation and maintains libido. However, most of the increasing bulk of testicular tissue is spermatogenic tissue (primarily Sertoli and interstitial cells). The development of sperm production and fertility in males is not as well documented. Sperm can be detected in the morning urine of most boys after the first year of pubertal changes (and occasionally earlier). Potential fertility is reached at about 13 years old in boys, but full fertility will not be gained until 14-16 years of age, although some go through the process faster, reaching it only 1 year later.Pubic hair
Pubic hair often appears on a boy shortly after the genitalia begin to grow. As in girls, the first appearance of pubic hair is termed pubarche and the pubic hairs are usually first visible at the dorsal (abdominal) base of the penis. The first few hairs are described as stage 2. Stage 3 is usually reached within another 6–12 months, when the hairs are too numerous to count. By stage 4, the pubic hairs densely fill the "pubic triangle." Stage 5 refers to spread of pubic hair to the thighs and upward towards the navel as part of the developing abdominal hair.Body and facial hair
In the months and years following the appearance of pubic hair, other areas of skin which respond to androgens develop heavier hair (androgenic hair) in roughly the following sequence: underarm (axillary) hair, perianal hair, upper lip hair, sideburn (preauricular) hair, periareolar hair, and the rest of the beard area. Arm, leg, chest, abdominal, and back hair become heavier more gradually. There is a large range in amount of body hair among adult men, and significant differences in timing and quantity of hair growth among different ethnic groups.Voice change
Under the influence of androgens, the voice box, or
larynx, grows in both
genders. This growth is far more prominent in boys, causing the
male voice to drop and deepen, sometimes abruptly but rarely "over
night," about one octave,
because the longer and thicker vocal folds
have a lower fundamental
frequency. Voices never "break." A typical 12-year old boy's
larynx is larger, even before voice change, than an adult woman's .
Occasionally, voice change is accompanied by unsteadiness of
vocalization in the early stages of untrained voices. Most of the
voice change happens during stage 3-4 of male puberty around the
time of peak growth. Full adult pitch is attained at an average age
of about 15 years. However, it usually precedes the development of
significant facial hair by several months to years.
Gigantism: Precocious puberty
The name to a particular growth defect that occurs during childhood, from over-exposure to growth hormone. Precocious puberty and a variety of conditions associated with excessive amounts of testosterone or estrogen in childhood will result in tallness by mid-childhood. People affected by Gigantism grow up in height up to 8ft (approximately 2.40 metres) very rarely. However, the acceleration of bone maturation by the early rise of estradiol results in early completion of growth, and adult heights for these children may actually be below average for genetic potential. The possible symptoms is a Normal genetic variation or Hyperthyroidism, XYY syndrome, Overnutrition, Acromegaly, McCune-Albright syndrome etc.Male musculature and body shape
By the end of puberty, adult men have heavier bones and nearly twice as much skeletal muscle. Some of the bone growth (e.g., shoulder width and jaw) is disproportionately greater, resulting in noticeably different male and female skeletal shapes. The average adult male has about 150% of the lean body mass of an average female, and about 50% of the body fat.This muscle develops mainly during the later
stages of puberty, and muscle growth can continue even after a male
is biologically adult. The peak of the so-called "strength spurt,"
the rate of muscle growth, is attained about one year after a male
experiences his peak growth rate.
Body odor, skin changes, acne
Rising levels of androgens can change the fatty acid composition of perspiration, resulting in a more "adult" body odor. As in girls, another androgen effect is increased secretion of oil (sebum) from the skin and the resultant variable amounts of acne. Acne can be prevented by antibacterial face washes and typically diminishes at the end of puberty.Breast development: pubertal gynecomastia
Estradiol is produced from testosterone in male puberty as well as female, and male breasts often respond to the rising estradiol levels. This is termed gynecomastia. In most boys, the breast development is minimal, similar to what would be termed a "breast bud" in a girl, but in some boys, breast growth is substantial. It usually occurs after puberty is underway, may increase for a year or two, and usually diminishes by the end of puberty. It is increased by extra adipose tissue if the boy is overweight. Weight loss for overweight teenagers can help reduce the prominence of gynecomastia but not diminish as to pubertal reasons.Although this is a normal part of male puberty
for perhaps half of boys, breast development is usually as
unwelcome as upper lip hair in girls, and can be removed surgically if it is
causing a lot of stress
or anxiety in the
boy.
Physical changes in females
Breast development
The first physical sign of puberty in females is usually a firm, tender lump under the center of the areola(e) of one or both breasts, occurring on average at about 10.5 years of age. This is referred to as thelarche. By the widely used Tanner staging of puberty, this is stage 2 of breast development (stage 1 is a flat, prepubertal breast). Within six to 12 months, the swelling has clearly begun in both sides, softened, and can be felt and seen extending beyond the edges of the areolae. This is stage 3 of breast development. By another 12 months (stage 4), the breasts are approaching mature size and shape, with areolae and papillae forming a secondary mound. In most young women, this mound disappears into the contour of the mature breast (stage 5), although there is so much variation in sizes and shapes of adult breasts that stages 4 and 5 are not always separately identifiable.Pubic hair
Pubic hair is often the second unequivocal change of puberty noticed, usually within a few months of thelarche. It is referred to as pubarche and the pubic hairs are usually visible first along the labia. The first few hairs are described as Tanner stage 2. Whitish secretions (physiologic leukorrhea) are a normal effect of estrogen as well. The ovaries usually contain small follicular cysts visible by ultrasound.Menstruation and fertility
The first menstrual bleeding is referred to as menarche, and typically occurs about 2 years after thelarche. Ovulation is necessary for fertility, but may or may not accompany the earliest menses. In postmenarchal girls, about 80% of the cycles were anovulatory in the first year after menarche, 50% in the third and 10% in the sixth year. The word nubility is used commonly in the social sciences to designate achievement of fertility.Body shape, fat distribution, and body composition
During this period, also in response to rising levels of estrogen, the lower half of the pelvis and thus hips widen (providing a larger birth canal). Fat tissue increases to a greater percentage of the body composition than in males, especially in the typical female distribution of breasts, hips, buttocks, thighs, upper arms, and pubis. Progressive differences in fat distribution as well as sex differences in local skeletal growth contribute to the typical female body shape by the end of puberty. At age 10 years, the average girl has 6% more body fat than the average boy, but by the end of puberty the average difference is nearly 50%.Body odor, skin changes, and acne
Rising levels of androgens can change the fatty acid composition of perspiration, resulting in a more "adult" body odor. This often precedes thelarche and pubarche by 1 or more years. Another androgen effect is increased secretion of oil (sebum) from the skin. This change increases the susceptibility to acne, a characteristic affliction of puberty greatly variable in its severity.Variations
Typical puberty is described above, but many children vary with respect to timing of onset, tempo, steadiness of continuation, and sequence of events.Timing of onset
Puberty is a process with a gradual onset beginning with changes of neuronal function in the hypothalamus, resulting in rising hormonal signals between brain and gonads, proceeding to gonadal growth and production of sex steroids, which in turn induce changes in responsive parts of the body. The definition of onset, therefore, depends on the perspective (e.g., hormonal versus physical) and purpose (establishing population normal standards, clinical care of early or late children, or a variety of other social purposes). The most commonly used definition of onset for both social and medical purposes is the appearance of the first physical changes described in this section of this article, but it should be understood that these physical changes are the first outward signs of preceding neural, hormonal, and gonadal function changes that are usually impossible or impractical to detect.The age at which puberty begins can vary widely
between individuals and between populations. Age of puberty is
affected by both genetic factors and by environmental factors such
as nutritional state or social circumstances. Timing may also be
affected by environmental factors (exogenous hormones and
environmental substances with hormone-like effects) and there is
even evidence that life experiences may play a role as well.
Ethnic/racial differences have been recognized
for centuries. For example, the average age of menarche in various populations
surveyed in the last several decades has ranged from 12.0 to 18.5
years. The earliest mean is reported for African-American girls and
the oldest for high altitude subsistence populations in Asia.
However, it is clear that much of the higher age averages reflect
nutritional limitations more than genetic differences and can
change within a few generations with a substantial change in diet.
The median age of menarche for a population may be an index of the
proportion of undernourished girls in the population, and the width
of the spread may reflect unevenness of wealth and food
distribution in a population.
Genetic influence
Various studies have found direct genetic effects to account for at least 46% of the variation of timing of puberty in well-nourished populations. The genetic association of timing is strongest between mothers and daughters. The specific genes affecting timing are not defined yet.Environmental factors
If genetic factors account for half of the variation of pubertal timing, environment factors are clearly important as well. One of the earliest observed environmental effects is that puberty occurs later in children raised at higher altitudes. The most important of the environmental influences is clearly nutrition, but a number of others have been identified, all which affect timing of female puberty and menarche more clearly than male puberty.Nutritional influence
Nutritional factors are the strongest and most obvious environmental factors affecting timing of puberty. Early puberty in girls can be a harbinger of later health problems.Physical activity and exercise
The average level of daily physical activity has also been shown to affect timing of puberty, especially female. A high level of exercise, whether for athletic or body image purposes, or for daily subsistence, reduces energy calories available for reproduction and slows puberty. The exercise effect is often amplified by a lower body fat mass.Physical illness
Many chronic diseases can delay puberty in both boys and girls. Those that involve chronic inflammation or interfere with nutrition have the strongest effect. In the western world, inflammatory bowel disease and tuberculosis have been notorious for such an effect in the last century, while in areas of the underdeveloped world, chronic parasite infections are widespread.Environmental chemicals and hormones
There is theoretical concern, and animal evidence, that environmental hormones and chemicals may affect aspects of prenatal or postnatal sexual development in humans. Large amounts of incompletely metabolized estrogens and progestagens from pharmaceutical products are excreted into the sewage systems of large cities, and are sometimes detectable in the environment. Sex steroids are sometimes used in cattle farming but have been banned in chicken meat production for 40 years. Although agricultural laws regulate use to minimize accidental human consumption, the rules are largely self-enforced in the United States. Significant exposure of a child to hormones or other substances that activate estrogen or androgen receptors could produce some or all of the changes of puberty.Harder to detect as an influence on puberty are
the more diffusely distributed environmental chemicals like PCBs
(polychlorinated
biphenyl), which can bind and trigger estrogen receptors.
More obvious degrees of partial puberty from
direct exposure of young children to small but significant amounts
of pharmaceutical sex steroids from exposure at home may be
detected during medical evaluation for precocious
puberty, but mild effects and the other potential exposures
outlined above would not.
Stress and social factors
Some of the least understood environmental influences on timing of puberty are social and psychological. In comparison with the effects of genetics, nutrition, and general health, social influences are small, shifting timing by a few months rather than years. Mechanisms of these social effects are unknown, though a variety of physiological processes, including pheromones, have been suggested based on animal research.The most important part of a child's psychosocial
environment is the family, and most of the social influence
research has investigated features of family structure and function
in relation to earlier or later female puberty. Most of the studies
have reported that menarche may occur a few months earlier in girls
in high-stress households, whose fathers are absent during their
early childhood, who have a stepfather in the home, who are
subjected to prolonged sexual abuse
in childhood, or who are adopted
from a developing country at a young age. Conversely, menarche may
be slightly later when a girl grows up in a large family with a
biological father present.
More extreme degrees of environmental stress,
such as wartime refugee status with threat to physical survival,
have been found to be associated with delay of maturation, an
effect that may be compounded by dietary inadequacy.
Most of these reported social effects are small
and our understanding is incomplete. Most of these "effects" are
statistical associations revealed by epidemiologic surveys.
Statistical associations are not necessarily causal, and a variety
of covariables and alternative explanations can be imagined.
Effects of such small size can never be confirmed or refuted for
any individual child. Furthermore, interpretations of the data are
politically controversial because of the ease with which this type
of research can be used for political advocacy. Accusations of bias
based on political agenda sometimes accompany scientific
criticism.
Another limitation of the social research is that
nearly all of it has concerned girls, partly because female puberty
requires greater physiologic resources and partly because it
involves a unique event (menarche) that makes survey research into
female puberty much simpler than male. More detail is provided in
the menarche
article.
Variations of tempo and progression
Tempo is the speed at which the process of pubertal changes progresses from beginning to end. The duration of puberty generally varies less than timing of onset, and approximates 4 years for girls and 6 for boys (from first physical changes to attainment of adult height). Nevertheless, some healthy children can proceed through puberty at a faster or slower tempo than most.An interruption of progression of puberty is
usually, but not always, due to abnormal causes such as malnutrition or anorexia
nervosa. Perhaps the most common apparently healthy variation
is apparent interruption for a couple of years just after
attainment of an early sign of initiation. For instance, some girls
may seem to develop stage 2 breast buds at 6 or 7 years of age with
no other signs of puberty, and nothing may happen for 2 or 3 years.
Physicians refer to this as "unsustained puberty."
Variations of sequence
The sequence of events of pubertal development can occasionally vary. For example, in about 15% of boys and girls, pubarche (the first pubic hairs) can precede, respectively, gonadarche and thelarche by a few months. Rarely, menarche can occur before other signs of puberty in a few girls. These variations deserve medical evaluation because they can occasionally signal a disease.Conclusion
In a general sense, the conclusion of puberty is reproductive maturity. Criteria for defining the conclusion may differ for different purposes: attainment of the ability to reproduce, achievement of maximal adult height, maximal gonadal size, or adult sex hormone levels. Maximal adult height is achieved at an average age of ~ 16 years for American girls and ~ 17 years for American boys. Potential fertility (sometimes termed nubility) usually precedes completion of growth by 1-2 years in girls and 3-4 years in boys. Stage 5 in the tables above typically represents maximal gonadal growth and attainment of adult hormone levels.Neurohormonal process
The endocrine reproductive system consists of the hypothalamus, the pituitary, the gonads, and the adrenal glands, with input and regulation from many other body systems. True puberty is often termed "central puberty" because it begins as a process of the central nervous system. A simple description of hormonal puberty is as follows:- The brain's hypothalamus begins to release pulses of GnRH.
- Cells in the anterior pituitary respond by secreting LH and FSH into the circulation.
- The ovaries or testes respond to the rising amounts of LH and FSH by growing and beginning to produce estradiol and testosterone.
- Rising levels of estradiol and testosterone produce the body changes of female and male puberty.
The onset of this neurohormonal process may
precede the first visible body changes by 1-2 years.
Components of the endocrine reproductive system
The arcuate nucleus of the hypothalamus is the driver of the reproductive system. It has neurons which generate and release pulses of GnRH into the portal venous system of the pituitary gland. The arcuate nucleus is affected and controlled by neuronal input from other areas of the brain and hormonal input from the gonads, adipose tissue and a variety of other systems.The pituitary
gland responds to the pulsed GnRH signals by releasing LH and
FSH into the blood of the general circulation, also in a pulsatile
pattern.
The gonads (testes and ovaries) respond to rising levels
of LH and FSH by producing the steroid sex hormones,
testosterone and
estradiol.
The adrenal
glands are a second source for steroid hormones. Adrenal
maturation, termed adrenarche, typically
precedes gonadarche in mid-childhood.
Major hormones
- GnRH (gonadotropin-releasing hormone) is a peptide hormone released from the hypothalamus which stimulates gonadotrope cells of the anterior pituitary.
- LH (luteinizing hormone) is a larger protein hormone secreted into the general circulation by gonadotrope cells of the anterior pituitary gland. The main target cells of LH are the Leydig cells of testes and the theca cells of the ovaries. LH secretion changes more dramatically with the initiation of puberty than FSH, as LH levels increase about 25-fold with the onset of puberty, compared with the 2.5-fold increase of FSH.
- FSH (follicle stimulating hormone) is another protein hormone secreted into the general circulation by the gonadotrope cells of the anterior pituitary. The main target cells of FSH are the ovarian follicles and the Sertoli cells and spermatogenic tissue of the testes.
- Testosterone is a steroid hormone produced primarily by the Leydig cells of the testes, and in lesser amounts by the theca cells of the ovaries and the adrenal cortex. Testosterone is the primary mammalian androgen and the "original" anabolic steroid. It acts on androgen receptors in responsive tissue throughout the body.
- Estradiol is a steroid hormone produced by aromatization of testosterone. Estradiol is the principal human estrogen and acts on estrogen receptors throughout the body. The largest amounts of estradiol are produced by the granulosa cells of the ovaries, but lesser amounts are derived from testicular and adrenal testosterone.
- Adrenal androgens are steroids produced by the zona reticulosa of the adrenal cortex in both sexes. The major adrenal androgens are dehydroepiandrosterone, androstenedione (which are precursors of testosterone), and dehydroepiandrosterone sulfate which is present in large amounts in the blood. Adrenal androgens contribute to the androgenic events of early puberty in girls.
- IGF1 (insulin-like growth factor 1) rises substantially during puberty in response to rising levels of growth hormone and may be the principal mediator of the pubertal growth spurt.
- Leptin is a protein hormone produced by adipose tissue. Its primary target organ is the hypothalamus. The leptin level seems to provide the brain a rough indicator of adipose mass for purposes of regulation of appetite and energy metabolism. It also plays a permissive role in female puberty, which usually will not proceed until an adequate body mass has been achieved.
Endocrine perspective
The endocrine reproductive system becomes functional by the end of the first trimester of fetal life. The testes and ovaries become briefly inactive around the time of birth but resume hormonal activity until several months after birth, when incompletely understood mechanisms in the brain begin to suppress the activity of the arcuate nucleus. This has been referred to as maturation of the prepubertal "gonadostat," which becomes sensitive to negative feedback by sex steroids.Gonadotropin
and sex steroid levels fall to low levels (nearly undetectable by
current clinical
assays) for approximately another 8 to 10 years of childhood.
Evidence is accumulating that the reproductive system is not
totally inactive during the childhood years. Subtle increases in
gonadotropin pulses occur, and ovarian follicles surrounding
germ
cells (future eggs) double in
number.
Normal puberty is initiated in the hypothalamus,
with de-inhibition of the pulse generator in the arcuate nucleus.
This inhibition of the arcuate nucleus is an ongoing active
suppression by other areas of the brain. The signal and mechanism
releasing the arcuate nucleus from inhibition have been the subject
of investigation for decades and remain incompletely understood.
Leptin
levels rise throughout childhood and play a part in allowing the
arcuate nucleus to resume operation. If the childhood inhibition of
the arcuate nucleus is interrupted prematurely by injury to the
brain, it may resume pulsatile gonadotropin release and puberty
will begin at an early age.
Neurons of the arcuate nucleus secrete
gonadotropin releasing hormone (GnRH) into the blood of the
pituitary portal system. These GnRH signals from the hypothalamus
induce pulsed secretion of LH (and to a lesser degree, FSH) at
roughly 1-2 hour intervals. In the years preceding physical
puberty, these gonadotropin pulses occur primarily at night and are
of very low amplitude, but as puberty approaches they can be
detected during the day. By the end of puberty, there is little
day-night difference in the amplitude and frequency of gonadotropin
pulses.
An array of "autoamplification processes"
increases the production of all of the pubertal hormones of the
hypothalamus, pituitary, and gonads.
Regulation of adrenarche and its
relationship to maturation of the hypothalamic-gonadal axis is not
fully understood, and some evidence suggests it is a parallel but
largely independent process coincident with or even preceding
central puberty. Rising levels of adrenal androgens (termed adrenarche)
can usually be detected between 6 and 11 years of age, even before
the increasing gonadotropin pulses of hypothalamic puberty. Adrenal
androgens contribute to the development of pubic hair (pubarche), adult body odor, and
other androgenic changes in both sexes. The primary clinical
significance of the distinction between adrenarche and gonadarche
is that pubic hair and body odor changes by themselves do not prove
that central puberty is underway for an individual child.
Hormonal changes in girls
As the amplitude of LH pulses increases, the theca cells of the ovaries begin to produce testosterone and smaller amounts of progesterone. Much of the testosterone moves into nearby cells called granulosa cells. Smaller increases of FSH induce an increase in the aromatase activity of these granulosa cells, which converts most of the testosterone to estradiol for secretion into the circulation.Rising levels of estradiol produce the
characteristic estrogenic body changes of female puberty: growth
spurt, acceleration of bone maturation and closure, breast growth,
increased fat composition, growth of the uterus, increased
thickness of the endometrium and the vaginal
mucosa, and widening of the lower pelvis.
As the estradiol levels gradually rise and the
other autoamplification processes occur, a point of maturation is
reached when the feedback sensitivity of the hypothalamic
"gonadostat" becomes positive. This attainment of positive feedback
is the hallmark of female sexual maturity, as it allows the mid
cycle LH surge necessary for ovulation.
Levels of adrenal androgens and testosterone also
increase during puberty, producing the typical androgenic changes
of female puberty: pubic hair, other androgenic hair as outlined
above, body odor, acne.
Growth hormone levels rise steadily throughout
puberty.
IGF1 levels rise and then decline as puberty ends. Growth
finishes and adult height is attained as the estradiol levels
complete closure of the epiphyses.
Hormonal changes in boys
Early stages of male hypothalamic maturation seem to be very similar to the early stages of female puberty, though occurring about 1-2 years later.LH stimulates the Leydig cells of the testes to
make testosterone and blood levels begin to rise. For much of
puberty, nighttime levels of testosterone are higher than daytime.
Regularity of frequency and amplitude of gonadotropin pulses seems
to be less necessary for progression of male than female
puberty.
However, a significant portion of testosterone in adolescent
boys is converted to estradiol. Estradiol mediates the growth
spurt, bone maturation, and epiphyseal closure in boys just as in
girls. Estradiol also induces at least modest development of breast
tissue (gynecomastia) in a large
proportion of boys. Boys who develop mild gynecomastia or even
developing swellings
under nipples during
puberty are told the effects are temporary in some male teenagers
due to high levels of Estradiol.
Another hormonal change in males takes place
during the teenage years for most young men. At this point in a
males life the testosterone levels slowly rise, and most of the
effects are mediated through the androgen receptors by way of
conversion dehydrotestosterone
in target organs (especially that of the bowels). Consequently,
there is a transformation that takes place and the processes in
which human waste and urine are released by the body are
reversed.
Historical shift
The age at which puberty occurs has dropped significantly since the 1840s. Researchers refer to this drop as the 'secular trend'. From 1840 through 1950, in each decade there was a drop of four months in the average age of menarche among Western European female samples. In Norway, girls born in 1840 had their first menarche at average 17 years. In France in 1840 the average was 15.3 years. In England the 1840 average was 16.5 years for girls. In Japan the decline happened later and was then more rapid: from 1945 to 1975 in Japan there was a drop of 11 months per decade.See also
References
Further reading
- Ducros, A. and Pasquet, P. "Evolution de l'âge d'apparition des premières règles (ménarche) en France". Biométrie Humaine (1978), 13, 35–43.
- Herman-Giddens ME, Slora EJ, Wasserman RC, et al. "Secondary sexual characteristics and menses in young girls seen in office practice: a study from the pediatric research in office settings network". Pediatrics, 1997; 99:501-12. Newer data suggesting we should be using lower age thresholds for evaluation.
- Plant TM, Lee PA, eds. The Neurobiology of Puberty. Bristol: Society for Endocrinology, 1995. Proceedings of the latest (4th) International Conference on the Control of the Onset of Puberty, containing summaries of current theories of physiological control, as well as GnRH analog treatment.
- Tanner JM, Davies PS. "Clinical longitudinal standards for height and weight velocity for North American children". J Pediatr 1985; 107:317-29. Highly useful growth charts with integrated standards for stages of puberty.
External links
- Teen Forums - Puberty
- NIH guide to puberty and adolescence
- Growing Up Sexually: A World Atlas
- Pictures and detailed information about breast development during puberty
- Research shows how evolution explains age of puberty, ScienceDaily, December 1, 2005.
- Mark Hanson, P. Gluckman. Evolution, development and timing of puberty, Trends in Endocrinology & Metabolism, January 2006.
- Neurobiological Mechanisms of the Onset of Puberty in Primates, Endocrine Reviews, 2001 Feb;22(1):111-51.
puberty in Arabic: بلوغ
puberty in Bavarian: Pubertät
puberty in Breton: Kaezouregezh
puberty in Bulgarian: Пубертет
puberty in Czech: Puberta
puberty in Welsh: Glasoed
puberty in Danish: Pubertet
puberty in German: Pubertät
puberty in Estonian: Puberteet
puberty in Spanish: Pubertad
puberty in Esperanto: Pubereco
puberty in Persian: بلوغ جنسی
puberty in French: Puberté
puberty in Galician: Puberdade
puberty in Croatian: Pubertet
puberty in Indonesian: Pubertas
puberty in Italian: Pubertà
puberty in Hebrew: התבגרות מינית
puberty in Latin: Pubertas
puberty in Lithuanian: Lytinė branda
puberty in Macedonian: Пубертет
puberty in Malay (macrolanguage): Baligh
puberty in Dutch: Puberteit
puberty in Japanese: 思春期
puberty in Norwegian: Pubertet
puberty in Norwegian Nynorsk: Pubertet
puberty in Polish: Pokwitanie
puberty in Portuguese: Puberdade
puberty in Romanian: Pubertate
puberty in Russian: Пубертат
puberty in Sinhala: ද්විතියික ලිංගික ලක්ෂණ
puberty in Simple English: Puberty
puberty in Slovak: Puberta
puberty in Slovenian: Puberteta
puberty in Serbian: Пубертет
puberty in Finnish: Murrosikä
puberty in Swedish: Pubertet
puberty in Tamil: பூப்பு
puberty in Vietnamese: Tuổi dậy thì
puberty in Turkish: Ergenlik dönemi
puberty in Chinese: 青春期