Dictionary Definition
plutonium n : a solid silvery gray radioactive
transuranic element whose atoms can be split when bombarded with
neutrons; found in minute quantities in uranium ores but is usually
synthesized in nuclear reactors; 13 isotopes are known with the
most important being plutonium 239 [syn: Pu, atomic
number 94]
User Contributed Dictionary
English
Pronunciation
Noun
- The transuranic chemical element with atomic number 94 and symbol Pu.
Derived terms
Translations
- Afrikaans: plutonium
- Albanian: plutonium
- Arabic: (blutónyum)
- Armenian: պլուտոնիում (plutonium)
- Basque: plutonioa
- Belarusian: плутонiй (plutónij)
- Bosnian: plutonij
- Breton: plutoniom
- Bulgarian: плутоний (plutónij)
- Catalan: plutoni
- Chinese: 钚 (bù)
- Cornish: plutonyum
- Croatian: plutonij
- Czech: plutonium
- Danish: plutonium
- Dutch: plutonium
- Esperanto: plutonio
- Estonian: plutoonium
- Faroese: plutonium
- Finnish: plutonium
- French: plutonium
- West Frisian: plutonium
- Gallegan: plutonio
- Georgian: პლუტონიუმი (plutoniumi)
- German: Plutonium
- Greek, Modern: πλουτώνιο (ploutónio)
- Hebrew: פלוטוניום (plutónyum)
- Hungarian: plutónium
- Icelandic: plúton
- Irish: plútóiniam
- Italian: plutonio
- Japanese: プルトニウム (purutoniumu)
- Kashmiri: plutón
- Korean: 플루토늄 (peullutonyum)
- Latin: plutonium
- Latvian: plutonijs
- Lithuanian: plutonis
- Luxembourgish: plutonium
- Macedonian: плутониум (plutónium)
- Malay: plutonium
- Maltese: plutonjum
- Manx: plutonium
- Mongolian: плутони (plutoni)
- Norwegian: plutonium
- Polish: pluton
- Portuguese: plutónio
- Romanian: plutoniu
- Russian: плутоний (plutónij)
- Scottish Gaelic: plutòiniam
- Serbian: плутониjум (plutonijum)
- Slovak: plutonium
- Slovenian: plutonij
- Spanish: plutonio
- Swedish: plutonium
- Tajik: plutoni'
- Tamil: புலூட்டோனியம் (pulūţţōniyam)
- Thai: (phlūtōniam)
- Turkish: plütonyum
- Ukrainian: плутонiй (plutónij)
- Uzbek: плутоний (plutoniy)
- Vietnamese: plutoni
- Welsh: plwtoniwm
External links
For etymology and more information refer to: http://elements.vanderkrogt.net/elem/pu.html (A lot of the translations were taken from that site with permission from the author)Czech
Noun
Extensive Definition
- "Pu" redirects here. For the abbreviation, see PU. For Chinese and other personal and place names starting with "Pu", see Special:Prefixindex/Pu.
Notable characteristics
Plutonium has been called "the most complex metal" and "a physicist's dream but an engineer's nightmare" for its peculiar physical and chemical properties. It has six allotropes normally and a seventh under pressure. The allotropes have very similar energy levels but significantly varying densities, making plutonium very sensitive to changes in temperature, pressure, or chemistry, and allowing for dramatic volume changes following phase transitions (in nuclear applications, it is usually alloyed with a small amount of gallium, which stabilizes it in the delta-phase). Plutonium is silvery in pure form, but has a yellow tarnish when oxidized. It possesses a low-symmetry structure, causing it to become progressively more brittle over time. Because it self-irradiates, it ages both from the outside-in and the inside-out.- Pu(VI), as PuO22+ (pink orange)
- Pu(VII), as PuO52- (dark red); the heptavalent ion is rare and prepared only under extreme oxidizing conditions.
Applications
The isotope 239Pu is a key fissile component in nuclear weapons, due to its ease of fissioning and availability. The critical mass for an unreflected sphere of plutonium is 16 kg, but through the use of a neutron-reflecting tamper the pit of plutonium in a fission bomb is reduced to 10 kg, which is a sphere with a diameter of 10 cm. The Manhattan Project "Fat Man" type plutonium bombs, using explosive compression of Pu to significantly higher densities than normal, were able to function with plutonium cores of only 6.2 kg. Complete detonation may be achieved through the use of an additional neutron source (often from a small amount of fusion fuel). The Fat Man bomb had an explosive yield of 21 kilotons. (See also nuclear weapon design.)The isotope plutonium-238
(238Pu) has a half-life of 88 years and emits a large amount of
thermal
energy as it decays. Being an alpha
emitter, it combines high energy radiation with low penetration
(thereby requiring minimal shielding). These characteristics make
it well suited for electrical power generation for devices which
must function without direct maintenance for timescales
approximating a human lifetime. It is therefore used in
radioisotope thermoelectric generators such as those powering
the Cassini and
New
Horizons (Pluto) space probes; earlier versions of the same
technology powered the ALSEP and EASEP systems
including seismic
experiments on the Apollo
Moon
missions.
238Pu has been used successfully to power
artificial heart pacemakers,
to reduce the risk of repeated surgery. It has been largely
replaced by lithium-based primary
cells, but as of 2003 there were somewhere between 50 and 100
plutonium-powered pacemakers still implanted and functioning in
living patients.
History
The production of plutonium and neptunium by bombarding uranium-238 with neutrons was predicted in 1940 by two teams working independently: Edwin M. McMillan and Philip Abelson at Berkeley Radiation Laboratory at the University of California, Berkeley; and by Egon Bretscher and Norman Feather at the Cavendish Laboratory of the University of Cambridge for the Tube Alloys project. Coincidentally both teams proposed the same names to follow on from uranium, following the sequence of the outer planets.First isolation
Plutonium was first produced and isolated on December 14, 1940 by Dr. Glenn T. Seaborg, Edwin M. McMillan, J. W. Kennedy, Z. M. Tatom, and A. C. Wahl by deuteron bombardment of uranium in the cyclotron at Berkeley. The discovery was kept secret due to the war. It was named after Pluto, having been discovered directly after neptunium (which itself was one higher on the periodic table than uranium), by analogy to solar system planet order as Pluto was considered to be a planet at the time (though technically it should have been "plutium", Seaborg said that he did not think it sounded as good as "plutonium"). Seaborg chose the letters "Pu" as a joke, which passed without notice into the periodic table. Originally, Seaborg and others thought about naming the element "ultinium" or "extremium" because they believed at the time that they had found the last possible element on the periodic table.Chemists at the University
of Chicago began to study the newly manufactured radioactive
element. The
George Herbert Jones Laboratory at the university was the site
where, on 18 August 1942, a trace quantity of this new element was
isolated and measured for the first time. This procedure enabled
chemists to determine the new element's atomic weight. Room 405 of
the building was named a National
Historic Landmark in May 1967.
During the Manhattan Project, plutonium was also
often referred, simply, to as "49". Number 4 was for the last digit
in 94 (atomic number of plutonium) and 9 for the last digit in
Pu-239, the weapon-grade fissile isotope used in nuclear
bombs.
Production
During the Manhattan Project, the first production reactor, the X-10 Graphite Reactor, was built at the Oak Ridge, Tennessee site that became Oak Ridge National Laboratory. Later, large (200MWt) reactors were set up at the Hanford Site (near Richland, Washington), for the production of plutonium, which was used in the first atomic bomb used at the "Trinity" test in July 1945. Plutonium was also used in the "Fat Man" bomb dropped on Nagasaki, Japan in August 1945. The "Little Boy" bomb dropped on Hiroshima used uranium-235, not plutonium.Large stockpiles of "weapons-grade" plutonium
were built up by both the Soviet Union
and the United
States during the Cold War. The
U.S. reactors at Hanford and
the Savannah
River Site in South Carolina produced 103,000 kg; It was
estimated there are another 170,000 kg of military plutonium in
Russia, with 300,000 kg accumulated worldwide. Since the end of the
Cold War, these stockpiles have become a focus of nuclear
proliferation concerns. In 2002, the
United States Department of Energy took possession of 34 metric
tons of excess weapons-grade plutonium stockpiles from the
United States Department of Defense, and as of early 2003 was
considering converting several nuclear power plants in the US from
enriched
uranium fuel to MOX fuel as a
means of disposing of plutonium stocks.
Medical experimentation
During the initial years after the discovery of plutonium, when its biological and physical properties were very poorly understood, a series of human radiation experiments were performed by the U.S. government and by private organizations acting on its behalf. During and after the end of World War II, scientists working on the Manhattan Project and other nuclear weapons research projects conducted studies of the effects of plutonium on laboratory animals and human subjects. In the case of human subjects, this involved injecting solutions containing (typically) five micrograms of plutonium into hospital patients thought to be either terminally ill, or to have a life expectancy of less than ten years either due to age or chronic disease condition. These eighteen injections were made without the informed consent of those patients and were not done with the belief that the injections would heal their conditions; rather, they were used to develop diagnostic tools for determining the uptake of plutonium in the body for use in developing safety standards for people working with plutonium during the course of developing nuclear weapons.The episode is now considered to be a serious
breach of medical ethics and of the Hippocratic
Oath, and has been sharply criticised as failing "both the test
of our national values and the test of humanity." More sympathetic
commentators have noted that while it was definitely a breach in
trust and ethics, "the effects of the plutonium injections were not
as damaging to the subjects as the early news stories painted, nor
were they so inconsequential as many scientists, then and now,
believe."
Occurrence
While almost all plutonium is manufactured synthetically, extremely tiny trace amounts are found naturally in uranium ores. These come about by a process of neutron capture by 238U nuclei, initially forming 239U; two subsequent beta decays then form 239Pu (with a 239Np intermediary), which has a half-life of 24,110 years. This is also the process used to manufacture 239Pu in nuclear reactors. Some traces of 244Pu remain from the birth of the solar system from the waste of supernovae, because its half-life of 80 million years is fairly long.A relatively high concentration of plutonium was
discovered at the
natural nuclear fission reactor in Oklo, Gabon in 1972. Since
1945, approximately 7700 kg has been released onto Earth through
nuclear
explosions.
Manufacture
Pu-240, Pu-241 and Pu-242
The activation cross
section for 239Pu is 270 barns, while
the fission cross section is 747 barns for thermal neutrons. The
higher plutonium isotopes are created when the uranium fuel is used
for a long time. It is the case that for high burnup used fuel that
the concentrations of the higher plutonium isotopes will be higher
than the low burnup fuel which is reprocessed to obtain bomb grade
plutonium.
Pu-239
Plutonium-239 is one of the three fissile materials used for the production of nuclear weapons and in some nuclear reactors as a source of energy. The other fissile materials are uranium-235 and uranium-233. Plutonium-239 is virtually nonexistent in nature. It is made by bombarding uranium-238 with neutrons in a nuclear reactor. Uranium-238 is present in quantity in most reactor fuel; hence plutonium-239 is continuously made in these reactors. Since plutonium-239 can itself be split by neutrons to release energy, plutonium-239 provides a portion of the energy generation in a nuclear reactor.Pu-238
There are small amounts of Pu-238 in the plutonium of usual plutonium-producing reactors. However, isotopic separation would be quite expensive compared to another method: when a U-235 atom captures a neutron, it is converted to an excited state of U-236. Some of the excited U-236 nuclei undergo fission, but some decay to the ground state of U-236 by emitting gamma radiation. Further neutron capture creates U-237 which has a half-life of 7 days and thus quickly decays to Np-237. Since nearly all neptunium is produced in this way or consists of isotopes which decay quickly, one gets nearly pure Np-237 by chemical separation of neptunium. After this chemical separation, Np-237 is again irradiated by reactor neutrons to be converted to Np-238 which decays to Pu-238 with a half-life of 2 days.Compounds
Plutonium reacts readily with oxygen, forming PuO and PuO2, as well as intermediate oxides. It reacts with the halogens, giving rise to compounds such as PuX3 where X can be F, Cl, Br or I; PuF4 and PuF6 are also seen. The following oxyhalides are observed: PuOCl, PuOBr and PuOI. It will react with carbon to form PuC, nitrogen to form PuN and silicon to form PuSi2.Plutonium like other actinides readily forms a
dioxide plutonyl core (PuO2). In the environment, this plutonyl
core readily complexes with carbonate as well as other oxygen
moieties (OH-, NO2-, NO3-, and SO4-2) to form charged complexes
which can be readily mobile with low affinities to soil.
- PuO2(CO3)1-2
- PuO2(CO3)2-4
- PuO2(CO3)3-6
PuO2 formed from neutralizing highly acidic
nitric acid solutions tends to form polymeric PuO2 which is
resistant to complexation. Plutonium also readily shifts valences
between the +3, +4, +5 and +6 states. It is common for some
fraction of plutonium in solution to exist in all of these states
in equilibrium.
Allotropes
Even at ambient pressure, plutonium occurs in a variety of allotropes. These allotropes differ widely in crystal structure and density; the α and δ allotropes differ in density by more than 25% at constant pressure.The presence of these many allotropes makes
machining plutonium very difficult, as it changes state very
readily. The reasons for the complicated phase diagram are not
entirely understood; recent research has focused on constructing
accurate computer models of the phase
transitions.
In weapons applications, plutonium is often
alloyed with another metal
(e.g., delta phase with a small percentage of gallium) to increase phase
stability and thereby enhance workability and ease of handling.
Interestingly, in fission weapons, the explosive shock waves
used to compress a plutonium core will also cause a transition from
the usual delta phase plutonium to the denser alpha phase,
significantly helping to achieve supercriticality.
Isotopes
Twenty-one plutonium radioisotopes have been characterized. The most stable are Pu-244, with a half-life of 80.8 million years, Pu-242, with a half-life of 373,300 years, and Pu-239, with a half-life of 24,110 years. Because of its comparatively large half-life, minute amounts of Pu-244 can be found in nature, All of the remaining radioactive isotopes have half-lives that are less than 7,000 years. This element also has eight meta states, though none are very stable (all have half-lives less than one second).The isotopes of plutonium range in atomic
weight from 228.0387 u
(Pu-228) to 247.074 u (Pu-247). The primary decay modes
before the most stable isotope, Pu-244, are spontaneous
fission and alpha
emission; the primary mode after is beta
emission. The primary decay
products before Pu-244 are uranium and neptunium isotopes
(neglecting the wide range of daughter nuclei created by fission
processes), and the primary products after are americium isotopes.
Key isotopes for applications are Pu-239, which
is suitable for use in nuclear weapons and nuclear reactors, and
Pu-238, which is suitable for use in
radioisotope thermoelectric generators; see above for more
details. The isotope Pu-240 undergoes spontaneous fission very
readily, and is produced when Pu-239 is exposed to neutrons. The
presence of Pu-240 in a material limits its nuclear bomb potential
since it emits neutrons randomly, increasing the difficulty of
initiating accurately the chain
reaction at the desired instant and thus reducing the bomb's
reliability and power. Plutonium consisting of more than about 90%
Pu-239 is called weapons-grade
plutonium; plutonium obtained from commercial reactors generally
contains at least 20% Pu-240 and is called reactor-grade
plutonium.
Pu-240, while of little importance by itself,
plays a crucial role as a contaminant in plutonium used in nuclear
weapons. It spontaneously fissions at a high rate, and a 1%
impurity in Pu-239 will lead to unacceptably early initiation of a
fission chain reaction in gun-type atomic weapons (e.g. the
proposed Thin
Man bomb), blowing the weapon apart before much of its material
can fission. Pu-240 contamination is the reason plutonium weapons
must use an implosion design. A theoretical 100% pure Pu-239 weapon
could be constructed as a gun-type device, but achieving this level
of purity is prohibitively difficult. Pu-240 contamination has
proven a mixed blessing to weapons designers. While it created
delays and headaches during the Manhattan Project because of the
need to develop implosion technology, those very same difficulties
are currently a barrier to nuclear proliferation. Implosion devices
are also inherently more efficient and less prone toward accidental
detonation than are gun-type weapons.
Precautions
Toxicity
Isotopes and compounds of plutonium are toxic due to its radioactivity While plutonium is sometimes described in media reports as "the most toxic substance known to man", from the standpoint of actual chemical or radiological toxicity this is incorrect. When taken in by mouth, plutonium is less poisonous than if inhaled, since it is not absorbed into the body efficiently when ingested. The U.S. Department of Energy estimates the increase in lifetime cancer risk for inhaled plutonium as 3×10−8 pCi−1. (this means that inhaling 1 μCi, or about 2.5 μg of reactor-grade plutonium is estimated to increase one's lifetime risk of developing cancer as a result of the exposure to 3%). When plutonium is absorbed into the body, it is excreted very slowly, with a biological half-life of 200 years. From a purely chemical standpoint, it is about as poisonous as lead and other heavy metals. Plutonium has a metallic taste.Plutonium may be extremely dangerous when handled
incorrectly. The alpha
radiation it emits does not penetrate the skin, but can irradiate
internal organs when plutonium is inhaled or ingested. Particularly
at risk are the skeleton, where it is likely to
be absorbed by the bone surface, and the liver, where it will likely
collect and become concentrated. Approximately 0.008 microcuries
absorbed in bone marrow is the maximum withstandable dose. Anything
more is considered toxic. Extremely fine particles of plutonium (on
the order of micrograms) can cause lung cancer
if inhaled.
Other substances including ricin, tetrodotoxin, botulinum toxin, and tetanus toxin are fatal in doses
of (sometimes far) under one milligram, and others (the nerve agents,
the amanita toxin) are
in the range of a few milligrams. As such, plutonium is not unusual
in terms of toxicity, even by inhalation. In addition, those
substances are fatal in hours to days, whereas plutonium (and other
cancer-causing radioactives) give an increased chance of illness
decades in the future. Considerably larger amounts may cause acute
radiation
poisoning and death if ingested or inhaled; however, so far, no
human is known to have immediately died because of inhaling or
ingesting plutonium and many people have measurable amounts of
plutonium in their bodies.
Criticality potential
Toxicity issues aside, care must be taken to avoid the accumulation of amounts of plutonium which approach critical mass, particularly because plutonium's critical mass is only a third of that of uranium-235's. Despite not being confined by external pressure as is required for a nuclear weapon, it will nevertheless heat itself and break whatever confining environment it is in. Shape is relevant; compact shapes such as spheres are to be avoided. Plutonium in solution is more likely to form a critical mass than the solid form (due to moderation by the hydrogen in water). A weapon-scale nuclear explosion cannot occur accidentally, since it requires a greatly supercritical mass in order to explode rather than simply melt or fragment. However, a marginally critical mass will cause a lethal dose of radiation and has in fact done so in the past on several occasions.Criticality
accidents have occurred in the past, some of them with lethal
consequences. Careless handling of tungsten carbide bricks around a
6.2 kg plutonium sphere resulted in a lethal dose of radiation at
Los Alamos on August 21,
1945, when
scientist Harry
K. Daghlian, Jr. received a dose estimated to be 510 rems
(5.1 Sv)
and died four weeks later. Nine months later, another Los Alamos
scientist, Louis
Slotin, died from a similar accident involving a beryllium
reflector and the same plutonium core (the so-called "demon core")
that had previously claimed the life of Daghlian. These incidents
were fictionalized in the 1989 film Fat
Man and Little Boy. In 1958, during a process of purifying
plutonium at Los Alamos, a critical mass was formed in a mixing
vessel, which resulted in the death of a crane operator. Other
accidents of this sort have occurred in the Soviet
Union, Japan, and many other
countries. (See
List of nuclear accidents.) The 1986 Chernobyl
accident caused a
minor release of plutonium.
Flammability
Metallic plutonium is also a fire hazard, especially if the material is finely divided. It reacts chemically with oxygen and water, which may result in an accumulation of plutonium hydride, a pyrophoric substance; that is, a material that will ignite in air at room temperature. Plutonium expands considerably in size as it oxidizes and thus may break its container. The radioactivity of the burning material is an additional hazard. Magnesium-oxide sand is the most effective material for extinguishing a plutonium fire. It cools the burning material, acting as a heat sink, and also blocks off oxygen. There was a major plutonium-initiated fire at the Rocky Flats Plant near Boulder, Colorado in 1969. To avoid these problems, special precautions are necessary to store or handle plutonium in any form; generally a dry inert atmosphere is required.See also
References
External links
- "A Perspective on the Dangers of Plutonium" by Lawrence Livermore National Laboratory [no longer online, but still available from the href="http://www.llnl.gov/csts/publications/sutcliffe/">http://www.llnl.gov/csts/publications/sutcliffe/ Internet Archive ]
- Collection of articles on plutonium at the Canadian Coalition for Nuclear Responsibility
- The Myth of Plutonium Toxicity
- Criticality Accidents Report Issued
- Nuclear Weapons: Disposal Options for Surplus Weapons-Usable Plutonium
- Unraveling the Phase Diagram of Plutonium **Dead Link**
- Physical, Nuclear, and Chemical, Properties of Plutonium from IEER
- Los Alamos National Laboratory — Plutonium
- It's Elemental — Plutonium
- DOE Plutonium fact sheet (PDF)
- End of the Plutonium Age, D. Samuels, Discover Magazine, vol. 26, no. 11 (November, 2005).
- WebElements.com — Plutonium
- EnvironmentalChemistry.com — Plutonium (JavaScript required)
- Federation of American Scientists — Plutonium production
- nuclearweaponarchive.org — Plutonium Manufacture and Fabrication
- Ambient pressure phase diagram of plutonium — A unified theory for α-Pu and δ-Pu, P. Söderlind, Europhys. Lett., 55 (4), p. 525 (2001).
- Nuclear Files.org Information regarding world plutonium inventories
- "Challenges in Plutonium Science" — Special issue of Los Alamos Science from 2000 dedicated to scientific work on plutonium.
- NLM Hazardous Substances Databank – Plutonium, Radioactive
- Plutonium: A History of the World's Most Dangerous Element
- Annotated bibliography on plutonium from the Alsos Digital Library.
plutonium in Arabic: بلوتونيوم
plutonium in Belarusian: Плутоній
plutonium in Bosnian: Plutonijum
plutonium in Bulgarian: Плутоний
plutonium in Catalan: Plutoni
plutonium in Czech: Plutonium
plutonium in Corsican: Plutoniu
plutonium in Welsh: Plwtoniwm
plutonium in Danish: Plutonium
plutonium in German: Plutonium
plutonium in Estonian: Plutoonium
plutonium in Modern Greek (1453-):
Πλουτώνιο
plutonium in Spanish: Plutonio
plutonium in Esperanto: Plutonio
plutonium in Basque: Plutonio
plutonium in Persian: پلوتونیوم
plutonium in French: Plutonium
plutonium in Irish: Plútóiniam
plutonium in Manx: Plutonium
plutonium in Galician: Plutonio
plutonium in Korean: 플루토늄
plutonium in Armenian: Պլուտոնիում
plutonium in Hindi: प्लुटोनियम
plutonium in Croatian: Plutonij
plutonium in Ido: Plutonio
plutonium in Indonesian: Plutonium
plutonium in Italian: Plutonio
plutonium in Hebrew: פלוטוניום
plutonium in Haitian: Plitonyòm
plutonium in Latin: Plutonium
plutonium in Latvian: Plutonijs
plutonium in Luxembourgish: Plutonium
plutonium in Lithuanian: Plutonis
plutonium in Lojban: jinmrplutoni
plutonium in Hungarian: Plutónium
plutonium in Malayalam: പ്ലൂട്ടോണിയം
plutonium in Marathi: प्लुटोनियम
plutonium in Malay (macrolanguage):
Plutonium
nah:Mictlāntēuctepoztli
plutonium in Dutch: Plutonium
plutonium in Japanese: プルトニウム
plutonium in Norwegian: Plutonium
plutonium in Norwegian Nynorsk: Plutonium
plutonium in Low German: Plutonium
plutonium in Polish: Pluton (pierwiastek)
plutonium in Portuguese: Plutônio
plutonium in Romanian: Plutoniu
plutonium in Russian: Плутоний
plutonium in Sicilian: Plutoniu
plutonium in Simple English: Plutonium
plutonium in Slovak: Plutónium
plutonium in Slovenian: Plutonij
plutonium in Serbian: Плутонијум
plutonium in Serbo-Croatian: Plutonijum
plutonium in Finnish: Plutonium
plutonium in Swedish: Plutonium
plutonium in Thai: พลูโทเนียม
plutonium in Turkish: Plütonyum
plutonium in Ukrainian: Плутоній
plutonium in Chinese: 钚