User Contributed Dictionary
Synonyms
- (containing nickel): nickelous
See also
Extensive Definition
Nickel () is a metallic chemical
element with the symbol Ni and atomic
number 28.
Characteristics
Nickel is a silvery-white metal that takes on a high polish. It belongs to the transition metals, and is hard and ductile. It occurs most usually in combination with sulfur and iron in pentlandite, with sulfur in millerite, with arsenic in the mineral nickeline, and with arsenic and sulfur in nickel glance.Similar to the massive forms of chromium, aluminium and titanium, nickel is a very
reactive element, but is slow to react in air at normal
temperatures and pressures. Due to its permanence in air and its
inertness to oxidation, it is used in
coins, for plating iron,
brass, etc., for chemical
apparatus, and in certain alloys, such as German
silver.
Nickel is magnetic, and is very often accompanied
by cobalt, both being
found in meteoric iron.
It is chiefly valuable for the alloys it forms, especially many
superalloys, and
particularly stainless
steel. Nickel is also a naturally magnetostrictive material,
meaning that in the presence of a magnetic
field, the material undergoes a small change in length. In the
case of Nickel, this change in length is negative (contraction of
the material), which is known as negative magnetostriction.
The most common oxidation
state of nickel is +2, though 0, +1, +3 and +4 Ni complexes are
observed. It is also thought that a +6 oxidation state may exist,
however, results are inconclusive.
The unit cell of nickel is a face centered cube
with a lattice parameter of 0.352 nm giving a radius of the atom of
0.125 nm.
Nickel-62 is the
most stable nuclide of all the existing elements; it is more stable
even than Iron-56.
History
The use of nickel is ancient, and can be traced back as far as 3500 BC. Bronzes from what is now Syria had a nickel content of up to 2%. Further, there are Chinese manuscripts suggesting that "white copper" (i.e. baitung) was used in the Orient between 1700 and 1400 BC. However, because the ores of nickel were easily mistaken for ores of silver, any understanding of this metal and its use dates to more contemporary times. Nickel is used today as common household utensils, such as silverware.Minerals containing nickel (e.g. kupfernickel,
meaning ("Nick"), or false copper) were of value for colouring
glass green. In 1751, Baron Axel
Fredrik Cronstedt was attempting to extract copper from
kupfernickel (now called niccolite), and obtained instead a white
metal that he called nickel.
In the United States, the term "nickel" or "nick"
was originally applied to the copper-nickel Indian cent coin
introduced in 1859. Later, the name designated the three-cent coin
introduced in 1865, and the following year the
five-cent shield nickel appropriated the designation, which has
remained ever since. Coins of pure nickel were first used in 1881
in Switzerland.
http://www.nidi.org/index.cfm/ci_id/160.htm
Occurrence
The bulk of the nickel mined comes from two types of ore deposits. The first are laterites where the principal ore minerals are nickeliferous limonite: (Fe, Ni)O(OH) and garnierite (a hydrous nickel silicate): (Ni, Mg)3Si2O5(OH). The second are magmatic sulfide deposits where the principal ore mineral is pentlandite: (Ni, Fe)9S8.In terms of supply, the Sudbury
region of Ontario, Canada, produces
about 30 percent of the world's supply of nickel. The Sudbury
Basin deposit is theorized to have been created by a massive
meteorite impact event
early in the geologic
history of
Earth. Russia contains about 40% of the world's known resources
at the massive Norilsk deposit in
Siberia.
The Russian mining company MMC
Norilsk Nickel mines this for the world market, as well as the
associated palladium.
Other major deposits of nickel are found in France
(New Caledonia), Australia,
Cuba, and
Indonesia. The
deposits in tropical areas are typically laterites which are
produced by the intense weathering of ultramafic igneous
rocks and the resulting secondary concentration of nickel
bearing oxide and silicate
minerals. A recent development has been the exploitation of a
deposit in western Turkey, especially
convenient for European smelters, steelmakers and factories. The
one locality in the United States where nickel is commercially
mined is Riddle,
Oregon, where several square miles of nickel-bearing garnierite
surface deposits are located.
Based on geophysical evidence, most of
the nickel on Earth is postulated to be concentrated in the
Earth's
core.
Applications
Nickel is used in many industrial and consumer products, including stainless steel, magnets, coinage, and special alloys. It is also used for plating and as a green tint in glass. Nickel is pre-eminently an alloy metal, and its chief use is in the nickel steels and nickel cast irons, of which there are innumerable varieties. It is also widely used for many other alloys, such as nickel brasses and bronzes, and alloys with copper, chromium, aluminium, lead, cobalt, silver, and gold.Nickel consumption can be summarized as: nickel
steels (60%), nickel-copper alloys and nickel
silver (14%), malleable nickel, nickel clad, Inconel and other
Superalloys
(9%), plating (6%), nickel cast irons (3%), heat and electric
resistance alloys, such as Nichrome (3%),
nickel brasses and bronzes (2%), others (3%).
In the laboratory, nickel is frequently used as a
catalyst for hydrogenation, most often
using Raney
nickel, a finely divided form of the metal.
Nickel has also been often used in coins, or
occasionally as a substitute for decorative silver. The
American 'nickel' five-cent coin is 75% copper. The Canadian
nickel minted at various periods between 1922-81 was 99.9%
nickel, and was magnetic.
Extraction and purification
Nickel is recovered by extractive metallurgy. Most sulfide ores have traditionally been processed using pyrometallurgical techniques to produce a matte for further refining. Recent advances in hydrometallurgy have resulted in recent nickel processing operations being developed using these processes. Most sulfide deposits have traditionally been processed by concentration through a froth flotation process followed by pyrometallurgical extraction. Recent advances in hydrometallurgical processing of sulfides has led to some recent projects being built around this technology.Nickel is extracted from its ores by conventional
roasting and reduction processes which yield a metal of >75%
purity. Final purification of nickel oxides is performed via the
Mond
process, which upgrades the nickel concentrate to >99.99%
purity. This process was patented by L. Mond and was used in South
Wales in the 20th century. Nickel is reacted with carbon
monoxide at around 50 °C to form volatile nickel carbonyl. Any impurities remain
solid. The nickel carbonyl gas is passed into a large chamber at
high temperatures in which tens of thousands of nickel spheres are
maintained in constant motion. The nickel
carbonyl decomposes depositing pure nickel onto the nickel
spheres (known as pellets). Alternatively, the nickel carbonyl may
be decomposed in a smaller chamber at 230 degrees Celsius to create
fine powders. The resultant carbon monoxide is re-circulated
through the process. The highly pure nickel produced by this
process is known as carbonyl nickel. A second common form of
refining involves the leaching of the metal matte followed by the
electro-winning of the nickel from solution by plating it onto a
cathode. In many stainless
steel applications, the nickel can be taken directly in the 75%
purity form, depending on the presence of any impurities.
Nickel sulfide ores undergo flotation
(differential flotation if Ni/Fe ratio is too low) and then get
smelted. Smelting a nickel sulfide flotation concentrate requires a
MgO level of <6% otherwise the temperature at which the smelting
will be run at will be too high and lead to higher operating costs.
After producing the nickel matte, further processing is done via
the Sherrit-Gowden process. First copper is removed by adding
hydrogen
sulfide, leaving a concentrate of only cobalt and nickel.
Solvent extration then efficiently separates the cobalt and nickel,
with the final nickel concentrate >99%.
In 2005, Russia was the
largest producer of nickel with about one-fifth world share closely
followed by Canada, Australia and
Indonesia, as
reported by the British
Geological Survey.
Compounds
See also nickel
compounds.
Isotopes
Naturally occurring nickel is composed of 5 stable isotopes; 58Ni, 60Ni, 61Ni, 62Ni and 64Ni with 58Ni being the most abundant (68.077% natural abundance). 18 radioisotopes have been characterised with the most stable being 59Ni with a half-life of 76,000 years, 63Ni with a half-life of 100.1 years, and 56Ni with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 1 meta state.Nickel-56 is produced in large quantities in type
Ia supernovae and the
shape of the light curve
of these supernovae corresponds to the decay via beta
radiation of nickel-56 to cobalt-56 and then to iron-56.
Nickel-59 is a long-lived cosmogenic radionuclide with a
half-life of 76,000 years. 59Ni has found many applications in
isotope
geology. 59Ni has been used to date the terrestrial age of
meteorites and to
determine abundances of extraterrestrial dust in ice and sediment.
Nickel-60 is the daughter product of the extinct
radionuclide 60Fe (half-life = 1.5 Myr). Because the extinct
radionuclide 60Fe had such a long half-life, its persistence in
materials in the solar system
at high enough concentrations may have generated observable
variations in the isotopic composition of 60Ni. Therefore, the
abundance of 60Ni present in extraterrestrial material may provide
insight into the origin of the solar system and its early
history.
Nickel-62 has the
highest binding
energy per nucleon of any isotope for any element (8.7946
Mev/nucleon). Isotopes heavier than 62Ni cannot be formed by
nuclear
fusion without losing energy.
Nickel-48, discovered in 1999, is the most
proton-rich heavy element isotope known . With 28 protons and 20 neutrons 48Ni is "doubly
magic" (like 208Pb) and therefore
unusually stable .
The isotopes of nickel range in atomic
weight from 48 u
(48-Ni) to 78 u (78-Ni). Nickel-78's half-life was recently
measured to be 110 milliseconds and is believed to be an important
isotope involved in supernova
nucleosynthesis of elements heavier than iron. http://skyandtelescope.com/news/article_1502_1.asp
Biological role
Nickel plays numerous roles in the biology of microorganisms and plants, though they were not recognized until the 1970s. In fact urease (an enzyme which assists in the hydrolysis of urea) contains nickel. The NiFe-hydrogenases contain nickel in addition to iron-sulfur clusters. Such [NiFe]-hydrogenases characteristically oxidise H2. A nickel-tetrapyrrole coenzyme, F430, is present in the methyl coenzyme M reductase which powers methanogenic archaea. One of the carbon monoxide dehydrogenase enzymes consists of an Fe-Ni-S cluster. Other nickel-containing enzymes include a class of superoxide dismutase and a glyoxalase.Precautions
Exposure to nickel metal and soluble compounds should not exceed 0.05 mg/cm³ in nickel equivalents per 40-hour work week. Nickel sulfide fume and dust is believed to be carcinogenic, and various other nickel compounds may be as well. Nickel carbonyl, [Ni(CO)4], is an extremely toxic gas. The toxicity of metal carbonyls is a function of both the toxicity of a metal as well as the carbonyl's ability to give off highly toxic carbon monoxide gas, and this one is no exception. It is explosive in air.Sensitized individuals may
show an allergy to
nickel affecting their skin, also known as dermatitis. Nickel is an
important cause of contact allergy, partly due to its use in
jewelry intended for pierced ears.
Nickel allergies affecting pierced ears
are often marked by itchy, red skin. Many earrings are now made
nickel-free due to this problem. The amount of nickel which is
allowed in products which come into contact with human skin is
regulated by the European
Union. In 2002 researchers found amounts of nickel being
emitted by 1 and 2 Euro coins far in
excess of those standards. This is believed to be due to a galvanic
reaction.
Metal Value
As of April 5, 2007 nickel was trading at $52,300 US/mt ($52.30 US/kg, $23.51 US/lb or $1.47 US/oz), http://www.metalprices.com/#Tables http://www.thefinancials.com/commodities/GotoMarketReport.html?id=MarketBaseMetals_CMMetals.html. Interestingly, the US nickel coin contains 0.04 oz (1.25 g) of nickel, which at this new price is worth 6.5 cents, along with 3.75 grams of copper worth about 3 cents, making the metal value over 9 cents. Since a nickel is worth 5 cents, this made it an attractive target for melting by people wanting to sell the metals at a profit. However, the United States Mint, in anticipation of this practice, implemented new interim rules on December 14, 2006, subject to public comment for 30 days, which criminalize the melting and export of cents and nickels.http://www.usmint.gov/pressroom/index.cfm?action=press_release&ID=724 Violators can be punished with a fine of up to US$10,000 and/or imprisoned for a maximum of five years.At current use rates, the supply of nickel is
predicted to run out in 90 years.
nickelic in Afrikaans: Nikkel
nickelic in Arabic: نيكل
nickelic in Azerbaijani: Nikel
nickelic in Bengali: নিকেল
nickelic in Belarusian: Нікель
nickelic in Bosnian: Nikl
nickelic in Bulgarian: Никел
nickelic in Catalan: Níquel
nickelic in Chuvash: Никĕль
nickelic in Czech: Nikl
nickelic in Corsican: Nichele
nickelic in Danish: Nikkel
nickelic in German: Nickel
nickelic in Estonian: Nikkel
nickelic in Modern Greek (1453-): Νικέλιο
nickelic in Spanish: Níquel
nickelic in Esperanto: Nikelo
nickelic in Basque: Nikel
nickelic in Persian: نیکل
nickelic in French: Nickel
nickelic in Friulian: Nichel
nickelic in Manx: Nickyl
nickelic in Galician: Níquel
nickelic in Korean: 니켈
nickelic in Armenian: Նիկել
nickelic in Hindi: निकेल
nickelic in Croatian: Nikal
nickelic in Ido: Nikelo
nickelic in Indonesian: Nikel
nickelic in Icelandic: Nikkel
nickelic in Italian: Nichel
nickelic in Hebrew: ניקל
nickelic in Georgian: ნიკელი
nickelic in Swahili (macrolanguage):
Nikeli
nickelic in Haitian: Nikèl
nickelic in Kurdish: Nîkel
nickelic in Latin: Niccolum
nickelic in Latvian: Niķelis
nickelic in Luxembourgish: Néckel
nickelic in Lithuanian: Nikelis
nickelic in Lojban: nikle
nickelic in Javanese: Nikel
nickelic in Hungarian: Nikkel
nickelic in Macedonian: Никел
nickelic in Malayalam: നിക്കല്
nickelic in Maori: Konukōreko
nickelic in Marathi: निकेल
nah:Iztāctepoztli
nickelic in Dutch: Nikkel
nickelic in Japanese: ニッケル
nickelic in Norwegian: Nikkel
nickelic in Norwegian Nynorsk: Nikkel
nickelic in Occitan (post 1500): Niquèl
nickelic in Uzbek: Nikel
nickelic in Low German: Nickel (Metall)
nickelic in Polish: Nikiel
nickelic in Portuguese: Níquel
nickelic in Romanian: Nichel
nickelic in Quechua: Nikil
nickelic in Russian: Никель
nickelic in Sicilian: Nichel
nickelic in Simple English: Nickel
nickelic in Slovak: Nikel
nickelic in Slovenian: Nikelj
nickelic in Serbian: Никл
nickelic in Serbo-Croatian: Nikl
nickelic in Finnish: Nikkeli
nickelic in Swedish: Nickel
nickelic in Tamil: நிக்கல்
nickelic in Thai: นิกเกิล
nickelic in Vietnamese: Niken
nickelic in Tajik: Никел
nickelic in Turkish: Nikel
nickelic in Ukrainian: Нікель
nickelic in Yiddish: ניקל
nickelic in Chinese: 镍