Dictionary Definition
mimic adj : constituting an imitation; "the mimic
warfare of the opera stage"- Archibald Alison n : someone who
mimics (especially an actor or actress) [syn: mimicker] v : imitate (a
person, a manner, etc.), especially for satirical effect; "The
actor mimicked the President very accurately" [syn: mime] [also: mimicking, mimicked]mimicked See mimic
User Contributed Dictionary
English
Verb
mimicked- past of mimic
Extensive Definition
In ecology, mimicry occurs when a
group of organisms, the mimics, have evolved to share common
perceived
characteristics with another group, the models, through the
selective action of a
signal-receiver or dupe. Collectively this is known as a mimicry
complex. The model is usually another species except in cases of
automimicry.
The signal-receiver is typically another intermediate organism, e.g
the common predator of
two species, but may actually be the model itself (such as a moth
resembling the very spiders that prey on it). As an interaction,
mimicry is in most cases advantageous to the mimic and harmful to
the receiver, but may increase, reduce or have no effect on the
fitness
of the model depending on the situation. Models themselves are
difficult to define in some cases, for example eye spots may not
bear resemblance to any specific organism's eyes, and camouflage
often cannot be attributed to any particular model.
Camouflage, in
which a species appears similar to its surroundings, is essentially
a form of visual mimicry, but usually is restricted to cases where
the model is non-living or abiotic. In between camouflage and
mimicry is mimesis, in which the mimic takes on the properties of a
specific object or organism, but one to which the dupe is
indifferent. Mimicry may involve morphology,
behavior, and other
properties. In any case, the signal always functions to deceive the
receiver by preventing it from correctly identifying the mimic. In
evolutionary terms, this phenomenon is a form of co-evolution
usually involving an evolutionary
arms race, and should not be confused with convergent
evolution, which occurs when species come to resemble one
another independently due to similar lifestyles.
Mimics may have multiple models during different
stages of their life
cycle, or they may be polymorphic,
with different individuals imitating different models. Models
themselves may have more than one mimic, though
frequency dependent selection favors mimicry where models
outnumber mimics. Models tend to be relatively closely related
organisms,
Etymology
Use of the word mimicry dates back to 1637. It is derived from the Greek term mimetikos, "imitative," in turn from mimetos, the verbal adjective of mimeisthai, "to imitate." Originally used to describe people, it was only applied to other forms of life after 1851.Classification
Many types of mimicry have been described. An
overview of each follows, highlighting the similarities and
differences between the various forms. Classification is often
based on function
with respect to the mimic (e.g. avoiding harm), though other
parameters can also be used, and multidimensional classifications
are required to understand the full picture. For this reason, some
cases may belong to more than one class, e.g. automimicry and
aggressive mimicry are not mutually exclusive, as one describes the
species relationship between model and mimic, while the other
describes the function for the mimic (obtaining food).
Defensive
Defensive or protective mimicry takes place when
organisms are able to avoid an encounter that would be harmful to
them by deceiving an enemy into treating them as something else.
Four such cases are discussed here, the first three of which entail
mimicry of an aposematic, harmful organism: Batesian mimicry, where
a harmless mimic poses as harmful; Müllerian mimicry, where two
harmful species share similar perceived characteristics; and
Mertensian mimicry, where a deadly mimic resembles a less harmful
but lesson-teaching model. Finally, Vavilovian mimicry, where weeds
resemble crops, is discussed.
Batesian
-
- The Ash Borer (Podosesia syringae), a moth of the Clearwing family (Sesiidae), is a Batesian mimic of the Common wasp because it resembles the wasp, but is not capable of stinging. A predator that has learned to avoid the wasp would similarly avoid the Ash Borer.
- Plain Tiger (Danaus chrysippus) - an unpalatable model with a number of mimics.
- Common Crow (Euploea core) - an unpalatable model with a number of mimics. See also under Müllerian mimicry below.
- Consul fabius and Eresia eunice imitate unpalatable Heliconius butterflies such as H. ismenius.
- The False Cobra (Malpolon moilensis) is a mildly venomous but harmless colubrid snake which mimics the characteristic "hood" of an Indian cobra's threat display. The Eastern Hognose Snake (Heterodon platirhinos) similarly mimics the threat display of venomous snakes.
- Octopuses of the genus Thaumoctopus (the Mimic Octopus and the "wunderpus") are able to intentionally alter their body shape and color so that they resemble dangerous sea snakes or lionfish.
Müllerian
Müllerian mimicry describes a situation where two or more species have very similar warning or aposematic signals and both share genuine anti-predation attributes (e.g. being unpalatable). At first Bates could not explain why this should be so; if both were harmful why did one need to mimic another? The German naturalist Fritz Müller put forward the first explanation for this phenomenon: If two species were confused with one another by a common predator, individuals in both would be more likely to survive. This type of mimicry is unique in several respects. Firstly, both the mimic and the model benefit from the interaction, which could thus be classified as mutualism in this respect. The signal receiver is also advantaged by this system, despite being deceived regarding species identity, as it avoids potentially harmful encounters. The usually clear identity of mimic and model are also blurred. In cases where one species is scarce and another abundant, the rare species can be said to be the mimic. When both are present in similar numbers however it is more realistic to speak of each as comimics than of a distinct 'mimic' and 'model' species, as their warning signals tend to converge toward something intermediate between the two. Another theoretical problem comes up when one considers that the two species may exist on a continuum from the harmless to the highly noxious, raising the question of where Batesian mimicry ends and Müllerian convergence begins.Examples:
- Lepidoptera
- The Monarch Butterfly (Danaus plexippus) is a member of a Müllerian complex with the Viceroy butterfly (Limenitis archippus) in shared coloration patterns and display behavior. The Viceroy has subspecies with somewhat different coloration, each one very closely matching the local Danaus species. E.g., in Florida, the pairing is of the Viceroy and the Queen Butterfly, and in Mexico, the Viceroy resembles the Soldier Butterfly. Therefore, the Viceroy is a single species involved in three different Müllerian pairs. This example was long believed to be a case of Batesian mimicry, with the Viceroy being the mimic and the Monarch the model, but it was more recently determined that the Viceroy is actually the more unpalatable species, though there is considerable individual variation. While L. archippus is really bad-tasting, Danaus species tend to be toxic rather than just repugnant, due to their different food plants.
- Unpalatable Euploea species look very similar. See also under Batesian mimicry above.
- The genus Morpho is palatable but are very strong fliers; birds - even species which are specialized for catching butterflies on the wing - find it very hard to catch them. The conspicuous blue coloration shared by most Morpho species seems to be a case of Müllerian mimicry.
- Many different tiger moths make ultrasonic clicking calls to warn bats that they are unpalatable. Presumably a bat may learn to avoid any signalling moths, which would make this an example of Müllerian mimicry. as a possible answer for the problem of Coral Snake mimicry in the New World. It was elaborated on by the German biologist Wolfgang Wickler in a chapter of Mimicry in Plants and Animals, (but see Sheppard (1969)). This scenario is a little more difficult to understand, as it is usually the most harmful species that is the model. If a predator dies, it cannot learn to recognize a warning signal, e.g. bright colors in a certain pattern. In other words, there is no advantage in being aposematic if an organism will kill any predators it succeeds in poisoning. It would then be better off camouflaged instead, so as to avoid encounters altogether. If, however, there is another species that is harmful but not deadly, the predator may learn to avoid it. Provided it results in less encounters than camouflage, the deadly species can then profit by mimicking this aposematic organism.
The exception here, ignoring any chance of
animals learning
by watching a conspecific die (see Jouventin et al. for a
discussion of observational learning and mimicry), is the
possibility of not having to learn that it is harmful in the first
place: instinctive
genetic programming to be wary of certain signals. In this case,
other organisms could benefit from this programming, and Batesian
or Müllerian mimics of it could potentially evolve. In fact, it has
been shown that some species do have an innate recognition of
certain aposematic warnings. Hand-reared Turquoise-browed
Motmots (Eumomota superciliosa), avian predators, instinctively
avoid snakes with red and yellow rings. Other colors with the same
pattern, and even red and yellow stripes with the same width as
rings, were tolerated. However, models with red and yellow rings
were feared, with the birds flying away and giving alarm calls in
some cases. This provides one alternative explanation to Mertensian
mimicry. See Greene and McDiarmid for a review of the
subject.
Examples:
- Some Milk Snake (Lampropeltis triangulum) subspecies (harmless), the moderately toxic False Coral Snakes (genus Erythrolamprus), and the deadly Coral Snakes all have a red background color with black and white/yellow stripes. In this system, both the milk snakes and the deadly coral snakes are mimics, whereas the false coral snakes are the model.
Wasmannian
Wasmannian mimicry refers to cases where the
mimic resembles a model along with which it lives (inquiline) in a nest or
colony. Most of the models here are social insects such as ants,
termites, bees and wasps.
Mimetic weeds
Vavilovian mimicry describes weeds which comes to share characteristics with a domesticated plant through artificial selection. It is named after Russian botanist and geneticist Nikolai Vavilov. Selection against the weed may occur either by manually killing the weed, or separating its seeds from those of the crop. The latter process, known as winnowing, can be done manually or by a machine.Vavilovian mimicry presents an illustration of
unintentional (or rather 'anti-intentional') selection by man.
While some cases of artificial selection go in the direction
desired, such as selective
breeding, this case presents the opposite characteristics.
Weeders do not want to select weeds that look increasingly like the
cultivated plant, yet there is no other option. A similar problem
in agriculture is pesticide.
Vavilovian mimics may eventually be domesticated themselves, and
Vavilov called these weeds-come-crops secondary crops.
It can be classified as defensive mimicry in that
the weed mimics a protected species. This bears strong similarity
to Batesian mimicry in that the weed does not share the properties
that give the model its protection, and both the model and the dupe
(in this case people) are both harmed by its presence. There are
some key differences, though; in Batesian mimicry the model and
signal receiver are enemies (the predator would eat the protected
species if could), whereas here the crop and its human growers are
in a mutualistic relationship: the crop benefits from being
dispersed and protected by people, despite being eaten by them. In
fact, the crop's only 'protection' relevant here is its usefulness
to humans. Secondly, the weed is not eaten, but simply destroyed.
The only motivation for killing the weed is its effect on crop
yields. Finally, this type of mimicry does not occur in ecosystems
unaltered by humans.
One case is Echinochloa
oryzoides, a species of grass which is found as a weed in
rice (Oryza sativa) fields.
The plant looks similar to rice and its seeds are often mixed in
rice and difficult to separate. This close similarity was enhanced
by the weeding process which is a selective force that increases
the similarity of the weed in each subsequent generation.
Protective egg decoys
Unlike the above forms of mimicry, Gilbertian
mimicry involves only two species. The potential host/prey drives
away its parasite/predator by mimicking it, the reverse of
host-parasite aggressive mimicry. It was coined by Pasteur as a
term for such rare mimicry systems,
This form of protective mimicry occurs in the
genus Passiflora. The
leaves of this plant contain toxins which deter herbivorous
animals, however some Heliconius
butterfly larvae have evolved enzymes which break down these
toxins, allowing them to specialize
on this genus. This has created further selection pressure on the
host plants, which have evolved stipules that mimic mature
Heliconius eggs near the point of hatching. These butterflies tend
to avoid laying eggs near each existing ones, which helps avoid
exploitative intraspecific
competition between caterpillars—those that lay on
vacant leaves provide their offspring with a greater chance of
survival. Additionally, most Heliconius larvae are cannibalistic,
meaning those leaves with older eggs will hatch first and eat the
new arrivals. Thus, it seems such plants have evolved egg dummies
due to these grazing herbivore enemies. The decoy eggs are also
nectaries though,
attracting predators of the caterpillars such as ants and wasps.
The extent of their mimetic function is therefore slightly more
difficult to assess.
The use of eggs is not essential to this system,
only the species composition and protective function. Many other
forms of mimicry also involve eggs, such as cuckoo eggs mimicking
those of their host (the reverse of this situation), or plants
seeds being dispersed by ants, who treat them as they would their
own eggs.
Protective mimicry within a species
Browerian mimicry is a form of automimicry; where the model belongs to the same species as the mimic. This is the analogue of Batesian mimicry within a single species, and occurs when there is a palatability spectrum within a population. One example is Monarch Butterflies (Danaus plexippus), which feed on milkweed species of varying toxicity. This species stores toxins from its host plant, which are maintained even in the adult (imago) form. As the levels of toxin will vary depending on diet during the larval stage, some individuals will be more toxic than others. The less palatable organisms will therefore be mimics of the more dangerous individuals, with their likeness already perfected. This need not be the case however; in sexually dimorphic species one sex may be more of a threat than the other, which could mimic the protected sex. Evidence for this possibility is provided by the behavior of a monkey from Gabon, which regularly ate male moths of the genus Anaphe, but promptly stopped after it tasted a noxious female.Aggressive
Aggressive mimicry describes predators (or parasites) which share the same characteristics as a harmless species, allowing them to avoid detection by their prey (or host). It is less often known as Peckhamian mimicry after George and Elizabeth Peckham. The mimic may resemble the prey or host itself, or another organism which is either neutral or beneficial to the signal receiver. In this class of mimicry the model may be affected negatively, positively or not at all. Just as parasites can be treated as a form of predator, host-parasite mimicry is treated here as a subclass of aggressive mimicry.The mimic may have a particular significance for
duped prey. One such case is spiders, amongst which aggressive
mimicry is quite common in both in luring prey and stealthily
approaching predators. One case is the Golden
Orb Weaver (Nephila clavipes), which spins a conspicuous golden
colored web in well-lit areas. Experiments show that bees are able
to associate the webs with danger when the yellow pigment is not
present, as occurs in less well-lit areas where the web is much
harder to see. Other colors were also learned and avoided, but bees
seemed least able to effectively associate yellow pigmented webs
with danger. Yellow is the color of many nectar bearing flowers,
however, so perhaps avoiding yellow is not worth while. Another
form of mimicry is based not on color but pattern. Species such as
Argiope
argentata employ prominent patterns in the middle of their
webs, such as zigzags. These may reflect ultraviolet light, and
mimic the pattern seen in many flowers known as nectar
guides. Spiders change their web day to day, which can be
explained by bee's ability to remember web patterns. Bees are able
to associate a certain pattern with a spatial location, meaning the
spider must spin a new pattern regularly or suffer diminishing prey
capture.
Another case is where males are lured towards
what would seem to be a sexually receptive female; the model in
this situation being the same species as the dupe. Beginning in the
1960s, James E. Lloyd's investigation of female fireflies of the genus Photuris
revealed they emit the same light signals that females of the genus
Photinus
use as a mating signal. Further research showed male fireflies from
several different genera
are attracted to these "femmes
fatales", and are subsequently captured and eaten. Female
signals are based on that received from the male, each female
having a repertoire of signals matching the delay and duration of
the female of the corresponding species. This mimicry may have
evolved from non-mating signals that have become modified for
predation.
Some carnivorous
plants may also be able to increase their rate of capture
through mimicry.
Luring is not a necessary condition however, as
the predator will still have a significant advantage by simply not
being identified as such. They may resemble a mutualistic symbiont or a species of little
relevance to the prey.
A case of the former situation is a species of
cleaner
fish and its mimic, though in this example the model is greatly
disadvantaged by the presence of the mimic. Cleaner fish are the
allies of many other species, which allow them to eat their
parasites and dead skin. Some allow the cleaner to venture inside
their body to hunt these parasites. However, one species of
cleaner, the Bluestreak
cleaner wrasse (Labroides dimidiatus), is the unknowing model
of a mimetic species, the Sabre-toothed blenny (Aspidontus
taeniatus). This wrasse,
shown to the left cleaning a grouper of the genus Epinephelus,
resides in coral reefs in
the Indian and the Pacific Oceans, and is recognized by other
fishes who then allow it to clean them. Its imposter, a species of
blenny, lives in the
Indian
Ocean and not only looks like it in terms of size and coloration,
but even mimics the cleaner's 'dance'. Having fooled its prey into
letting its guard down, it then bites it, tearing off a piece of
its fin before fleeing the scene. Fish grazed upon in this fashion soon
learn to distinguish mimic from model, but because the similarity
is close between the two they become much more cautious of the
model as well, such that both are affected. Due to victim's ability
to discriminate between foe and helper, the blennies have evolved
close similarity, right down to the regional level.
Another interesting example that does not involve
any luring is the Zone-tailed
Hawk, which resembles the Turkey
Vulture. It flies amongst the vultures, suddenly breaking from
the formation and ambushing its prey. Here the hawk's presence is
of no evident significance to the vultures, affecting them neither
negatively or positively.
Parasites
Parasites can also be aggressive mimics, though the situation is somewhat different than those outlined above.Some of the predators described have a feature
that draws prey, and parasites can also mimic their host's natural
prey, but are eaten themselves, a pathway into their host. Leucochloridium,
a genus of flatworm,
matures in the digestive system of songbirds, their eggs then
passing out of the bird via the feces . They are then taken up by
Succinea,
a terrestrial snail. The eggs develop in this intermediate
host, and then must find of a suitable bird to mature in. Host
birds do not eat snails though, so the sporocyst must find some
strategy to reach its host's intestine. For this function, they are
brightly colored and move in a pulsating fashion. A sporocyst-sac
pulsates in the snail's eye stalks, coming to resemble an
irresistible meal for a songbird. In this way, it can bridge the
gap between hosts, allowing it to complete its life cycle.
In an unusual case, planidium larvae of some
beetles of the genus Meloe will form a
group and produce a pheromone that mimics the sex
attractant of its host bee species; when
the male bee arrives and attempts to mate with the mass of larvae,
they climb onto his abdomen, and from there transfer to a female
bee, and from there to the bee nest to parasitize the bee
larvae.
Host-parasite mimicry is a two species system
where a parasite mimics its own host. Cuckoos are a
canonical example of brood
parasitism, a form of kleptoparasitism where
the mother has its offspring raised by another unwitting organism,
cutting down its the biological mother's parental
investment in the process. Cases of interspecific brood
parasitism, where a female lays in conspecific's nest, as
illustrated by the Goldeneye
duck (Bucephala clangula), do not represent a case of
mimicry.
Reproductive
Reproductive mimicry occurs when the actions of the dupe directly aid in the mimic's reproduction. This is common in plants, which may have deceptive flowers that do not provide the reward they would seem to. Other forms of mimicry have a reproductive component, such as Vavilovian mimicry involving seeds, and brood parasitism, which also involves aggressive mimicry.Mimicry of flowers
Bakerian mimicry, named after Herbert G.
Baker, is a form of automimicry where female flowers mimic male flowers of
their own species, cheating pollinators out of a reward. This
reproductive mimicry may not be readily apparent as members of the
same species may still exhibit some degree of sexual
dimorphism. It is common in many species of Caricaceae.
Like Bakerian mimicry, Dodsonian mimicry is a
form of reproductive floral mimicry, but the model belongs to a
different species than the mimic. The name refers to Calaway
H. Dodson. By providing similar sensory signals as the model
flower, it can lure its pollinators. Like Bakerian mimics, no
nectar is provided. Epidendrurn
ibaguense of the family Orchidaceae
resembles flowers of Lantana
camara and Asclepias
curassavica, and is pollinated by Monarch Butterflies and
perhaps hummingbirds. Similar cases
are seen in some other species of the same family. The mimetic
species may still have pollinators of its own though, for example a
lamellicorn
beetle which usually pollinates correspondingly colored
Cistus
flowers is also known to aid in pollination of Ophrys species that
are normally pollinated by bees.
Pseudocopulation
Pseudocopulation occurs when a flower mimics a female of a certain insect species, the males of which try to copulate with it. This is much like the aggressive mimicry in fireflies described above, but with a much more benign outcome for the pollinator. This form of mimicry has been called Pouyannian mimicry, It is most common in orchids which mimic females of the order Hymenoptera (generally bees and wasps), and may account for around 60% of pollinations. Depending on the morphology of the flower, a pollen sac called a pollinia is attached to the head or abdomen of the male. This is then transferred to the stigma of the next flower the male tries to inseminate, resulting in pollination. Visual mimicry is the most obvious sign of this deception for humans, but the visual aspect may be minor or non-existent. It is the senses of touch and olfaction that are most important.- Female hyenas have pseudo-penises which make them look like males.
Other
Some forms of mimicry do not fit easily within the classification given above.Owl
butterflies (genus Caligo) bear eye-spots on the underside of
their wings; if turned upside-down, their undersides resemble the
face of an owl (such as the
Short-eared
Owl or the Tropical
Screech Owl) for which in turn the butterfly predators - small
lizards and birds - would
be fooled. Thus it has been supposed that the eye-spots are a form
of Batesian mimicry. However, the pose in which the butterfly
resembles an owl's head is not normally adopted in life. Recently
zoologists have shown experimentally that eye-spots are not a form
of mimicry and do not deter predators because they look like eyes,
rather patterns on moth wings deter predators due to
conspicuousness.
Another case is floral mimicry induced by the
discomycete
fungus Monilinia
vaccinii-corymbosi. In this unusual case, a fungal plant
pathogen infects leaves
of blueberries,
causing them to secrete sugary substances including glucose and
fructose, in effect mimicking the nectar of flowers. To the naked
eye the leaves do not look like flowers, yet strangely they still
attract pollinating insects like bees. As it turns out, the sweet
secretions are not the only cues—the leaves also reflect
ultraviolet, which
is normally absorbed by the plant's leaves. Ultraviolet light is
also employed by the host's flowers as a signal to insects, which
have visual systems quite capable of picking up this low wavelength
(300-400nm) radiation. The fungus is then transferred to the
ovaries of the flower where it produces mummified, inedible
berries, which overwinter before infecting new plants. This case is
unusual in that the fungus benefits from the deception, but it is
the leaves which act as mimics, being harmed in the process. It
bears similarity to host-parasite mimicry, but the host does not
receive the signal. It also has a little in common with
automimicry, but the plant does not benefit from the mimicry, and
the action of the pathogen is required to produce it.
Evolution
It is widely accepted that mimicry evolves as a positive
adaptation; that is, the mimic gains fitness via convergent
evolution which results in resemblance to another species,
though there are a few who have suggested that evolution is
non-adaptive or merely a result of structural similarities. The
lepidopterist (and sometime author) Vladimir
Nabokov argued that much of insect mimicry, including the
Viceroy/Monarch mimicry, resulted from the fact that coloration
patterns in both species simply had a common structural basis, and
thus the tendency for convergence by chance was high. However, this
very example provides evidence precisely to the contrary, as the
viceroy's color pattern is completely unlike any of the species to
which it is closely related, and the viceroy itself has three color
forms, each adapted to resemble a different species of Danaus.
See also
Similar terms
Further reading
- Vane-Wright RI. 1976. A unified classification of mimetic resemblances. Biol. J. Linn. Soc. 8:25-56
- Cott, H.B. (1940) Adaptive Coloration in Animals. Methuen and Co, Ltd., London ISBN 0416300502
- Wickler, W. (1968) Mimicry in Plants and Animals (Translated from the German) McGraw-Hill, New York. ISBN 0070701008
- Edmunds, M. 1974. Defence in Animals: A Survey of Anti-Predator Defences. Harlow, Essex & NY: Longman 357 p. ISBN 0582441323
- Owen, D. (1980) Camouflage and Mimicry. Oxford University Press ISBN 0192176838
- Pasteur, Georges (1982). “A classificatory review of mimicry systems”. Annual Review of Ecology and Systematics 13: 169–199.
- Brower, L. (ed.) (1988). Mimicry and the Evolutionary Process. Chicago: The University of Chicago Press. ISBN 0226076083 (a supplement of volume 131 of the journal American Naturalist dedicated to E. B. Ford.)
- Ruxton, G. D.; Speed, M. P.; Sherratt, T. N. (2004). Avoiding Attack. The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford: Oxford University Press. ISBN 0198528604
- Evans, M. A. (1965) Mimicry and the Darwinian Heritage Journal of the History of Ideas 26 (2): 211-220.
- Wiens, D. (1978) Mimicry in Plants. Evolutionary Biology. 11:365–403.
- Dafni, A. (1984) Mimicry and Deception in Pollination Annual Review of Ecology and Systematics 15 : 259-278.
- An introductory book for a younger audience: Hoff, M. K. (2003) Mimicry and Camouflage. Creative Education. Mankato, Minn. Great Britain. ISBN 1583412379
References
External links
mimicked in Danish: Mimicry
mimicked in German: Mimikry
mimicked in Spanish: Mimetismo
mimicked in French: Mimétisme
mimicked in Croatian: Mimikrija
mimicked in Korean: 의태
mimicked in Italian: Mimetismo
mimicked in Lithuanian: Mimikrija
mimicked in Malayalam: അനുകരണം
mimicked in Dutch: Mimicry
mimicked in Japanese: 擬態
mimicked in Norwegian Nynorsk: Mimikry
mimicked in Polish: Mimikra
mimicked in Portuguese: Mimetismo
mimicked in Russian: Мимикрия
mimicked in Serbian: Мимикрија
mimicked in Finnish: Mimikry
mimicked in Swedish: Mimicry
mimicked in Chinese: 拟态