Dictionary Definition
Verb
1 join or attach with or as if with glue; "paste
the sign ont the wall"; "cut and paste the sentence in the text"
[syn: paste]
2 be fixed as if by glue; "His eyes were glued on
her"
User Contributed Dictionary
English
Etymology
From Old French glu (now ‘birdlime’), from late Latin glus, glut-, from Latin gluten.Pronunciation
- /ɡluː/
- /glu:/
-
- Rhymes: -uː
Noun
Translations
sticky adhesive substance
- Arabic: (ghirā’), (lizāq)
- Chinese: 胶 (jiāo)
- Czech: lepidlo
- Dutch: lijm
- Finnish: liima
- French: colle
- German: Klebstoff, Leim
- trreq Hebrew
- Hungarian: ragasztó
- Italian: colla
- Japanese: 糊 (のり, nori)
- Korean: 풀 (pul)
- Latin: gluten
- Polish: klej
- Russian: клей (klei)
- Serbian: lepak, tutkalo
- Spanish: cola, goma
- Swedish: klister, lim
Derived terms
Verb
Translations
join with glue
Extensive Definition
An adhesive is a compound that adheres or bonds two items
together. Adhesives may come from either natural or synthetic
sources. Some modern adhesives are extremely strong, and are
becoming increasingly important in modern construction and
industry.
History
The first adhesives were natural gums
and other plant resins or
saps. It was believed that the Sumerian people were
the first to use it until it was discovered that Neanderthals as
far back as 50,000 years made adhesives from birch bark. The
discovery of 6000-year-old ceramics brought evidence to archaeologists about the
first practical uses and ingredients of the first adhesives. Most
early adhesives were animal glues
made by rendering animal products such as horse teeth. During the
times of Babylonia, tar-like
glue was used for gluing statues. The Egyptians made
much use of animal glues to adhere furniture, ivory, and papyrus. The Mongols also used
adhesives to make their short bows, and the
Native Americans of the eastern United States used a mixture of
spruce gum and fat as
adhesives to add waterproof seams in their birchbark canoes.
In Medieval
Europe/Eurasia, egg whites were used as glue to decorate parchments with gold leaf.
Holland, in the early 1700s, founded the first ever glue factory.
Later, in the 1750s, the British introduced fish glue. As the
modern world evolved, several other patented materials, such as
bones, starch, fish, and casein, were introduced as
alternative materials for glue manufacture. Modern glues have
improved beyond recognition. Such improvements are noticeable in
its flexibility, toughness, curing rate, temperature, and chemical
resistance. The bond between two items depends on the shape of the
adhesive.
Categories of adhesives
Homemade casein adhesive
This is an adhesive prepared at home, or by one's own efforts with normal household products. There are many types of glue that can be made. Homemade glue may stick or hold better than commercial glue (for example, Elmer's glue), depending on the ingredients that are used. The glue is best kept in an airtight container in the refrigerator. See more at: Homemade glueNatural adhesives
Natural adhesives are made from inorganic mineral
sources, or biological sources such as vegetable matter, starch (dextrin), natural resins, animal
skin, and bioadhesives. A simple
paste can be made by mixing flour and water.
Synthetic adhesives
Drying adhesives
These adhesives are a mixture of ingredients (typically polymers) dissolved in a solvent. Glues such as white glue, and rubber cements are members of the drying adhesive family. As the solvent evaporates, the adhesive hardens. Depending on the chemical composition of the adhesive, they will adhere to different materials to greater or lesser degrees. These adhesives are typically weak and are used for household applications. Some intended for use by small children are now made non-toxic.AXÉ FAST ADHESIVE Its an adhesive set which
consist of high viscosity cyanoacrylate and activator.
PROPERTIES High bonding strength. Suitable for
use on vertical surfaces as it will not drip or slump. It is
particularly suited to bonding difficult substrates which have a
porous or uneven nature since it increases bonding strength by
preventing the adhesive to be absorbed by the surface.
APPLICATIONS It is particularly used for fixing
and repairing wooden parts. Suitable for MDF, wood, chipboard,
rubber, most plastics, leather etc. Especially suitable for the
applications where cure speed needs to be accelerated.
Contact adhesives
Contact adhesive is one which must be applied to both surfaces and allowed some time to dry before the two surfaces are pushed together. Some contact adhesives require as long as 24 hours to dry before the surfaces are to be held together. Once the surfaces are pushed together, the bond forms very quickly, hence, it is usually not necessary to apply pressure for a long time. This means that there is no need to use clamps, which is convenient.Natural rubber and
polychloroprene
(Neoprene) are commonly used contact adhesives. Both of these
elastomers undergo strain
crystallization.
Contact adhesives find use in laminates, such as bonding
Formica
to a wooden counter, and in footwear, for example
attachment of an outsole to an upper.
Hot adhesives (thermoplastic adhesives)
Also known as "hot melt" adhesives, these
adhesives are thermoplastics; they are
applied hot and simply allowed to harden as they cool. These
adhesives have become popular for crafts because of their ease of
use and the wide range of common materials to which they can
adhere. A glue gun, pictured right, is one method of applying a hot
adhesive. The glue gun melts the solid adhesive and then allows the
liquid to pass through the "barrel" of the gun onto the material
where it solidifies.
Paul E. Cope [deceased, 2003] is reputed to have
invented thermoplastic glue [circa 1940] while working for Procter
& Gamble as a chemical and packaging engineer. His
invention solved a problem with water based adhesives that were
commonly used in packaging at that time. Water based adhesives
often released in humid climates which caused packages to open and
become damaged. Mr. Cope was a graduate of the University of
Cincinnati College of Engineering. He advanced at Procter &
Gamble to become Associate Director, Head of Packaging Engineering.
After spending 40 years with P&G, he retired in 1973. Patents
issued to Paul Cope include the laminated toothpaste tube and this
for
In Package Sterilization
Reactive adhesives
A reactive adhesive works either by chemical bonding with the surface material or by in-situ hardening as two reactant chemicals complete a polymerization reaction. They are usually applied in thin films.Reactive adhesives are less effective when there
is a secondary goal of filling gaps between the surfaces. These
include two-part epoxy,
peroxide, silane, metallic cross-links, or
isocyanate.
Such adhesives are frequently used to prevent
loosening of bolts and screws in rapidly moving assemblies, such as
automobile engines. They are largely responsible for the quieter
running modern car engines.
UV and light curing adhesives
UV and light curing adhesives consist essentially of low or medium molecular weight resins.Pressure sensitive adhesives
Pressure sensitive adhesives (PSAs) form a bond by the application of light pressure to marry the adhesive with the adherend. They are designed with a balance between flow and resistance to flow. The bond forms because the adhesive is soft enough to flow (i.e. "wet") the adherend. The bond has strength because the adhesive is hard enough to resist flow when stress is applied to the bond. Once the adhesive and the adherend are in close proximity, molecular interactions, such as van der Waals' forces, become involved in the bond, contributing significantly to its ultimate strength.Pressure sensitive adhesives (PSAs) are designed
for either permanent or removable applications. Examples of
permanent applications include safety labels for power equipment,
foil tape for HVAC duct work, automotive interior trim assembly,
and sound/vibration damping films. Some high performance permanent
PSAs exhibit high adhesion values and can support kilograms of
weight per square centimeter of contact area, even at elevated
temperature. Permanent PSAs may be initially removable (for example
to recover mislabeled goods) and build adhesion to a permanent bond
after several hours or days.
Removable adhesives are designed to form a
temporary bond, and ideally can be removed after months or years
without leaving residue on the adherend. Removable adhesives are
used in applications such as surface protection films, masking
tapes, bookmark and note papers, price marking labels, promotional
graphics materials, and for skin contact (wound care dressings, EKG
electrodes, athletic tape, analgesic and transdermal drug patches,
etc.). Some removable adhesives are designed to repeatedly stick
and unstick. They have low adhesion and generally can not support
much weight.
Pressure sensitive adhesives are manufactured
with either a liquid carrier or in 100% solid form. Articles are
made from liquid PSAs by coating the adhesive and drying off the
solvent or water carrier. They may be further heated to initate a
crosslinking
reaction and increase molecular
weight. 100% solid PSAs may be low viscosity polymers that are
coated and then reacted with radiation to increase molecular weight
and form the adhesive; or they may be high viscosity materials that
are heated to reduce viscosity enough to allow coating, and then
cooled to their final form.
Plastic wrap
displays temporary adhesive properties as well.
Mechanisms of adhesion
mainarticle adhesion The strength of attachment, or adhesion, between an adhesive and its substrate depends on many factors, including the means by which this occurs. Adhesion may occur either by mechanical means, in which the adhesive works its way into small pores of the substrate, or by one of several chemical mechanisms.In some cases an actual chemical
bond occurs between adhesive and substrate. In others
electrostatic forces, as in static electricity, hold the substances
together. A third mechanism involves the van
der Waals forces that develop between molecules. A fourth means
involves the moisture-aided diffusion of the glue into the
substrate, followed by hardening.
Failure of the adhesive joint
When subjected to loading, debonding may occur at different locations in the adhesive joint. The major fracture types are the following:Cohesive fracture
“Cohesive” fracture" is obtained if a crack propagates in the bulk polymer which constitutes the adhesive. In this case the surfaces of both adherents after debonding will be covered by fractured adhesive. The crack may propagate in the centre of the layer or near an interface. For this last case, the “cohesive” fracture can be said to be “cohesive near the interface”. Most quality control standards consider that a “good” adhesive bonding must be “cohesive”.Interfacial fracture
The fracture is “adhesive” or “interfacial” when debonding occurs between the adhesive and the adherent. In most cases, the occurrence of “interfacial” fracture for a given adhesive goes along with a smaller fracture toughness. The “interfacial” character of a fracture surface is usually to identify the precise location of the crack path in the interphase.Other types of fracture
Beside these two cases, other types of fracture are- The “mixed” fracture type which occurs if the crack propagates at some spots in a “cohesive” and in others in an “interfacial” manner. “Mixed” fracture surfaces can be characterised by a certain percentage of “adhesive” and “cohesive” areas.
- The “alternating crack path” fracture type which occurs if the cracks jumps from one interface to the other. This type of fracture appears in the presence of tensile pre-stresses in the adhesive layer.
- Fracture can also occur in the adherent if the adhesive is tougher than the adherent. In this case the adhesive remains intact and is still bonded to one substrate and the remnants of the other. For example, when one removes a price label, adhesive usually remains on the label and the surface. This is cohesive failure. If, however, a layer of paper remains stuck to the surface, the adhesive has not failed. Another example is when someone tries to pull apart Oreo cookies and all the filling remains on one side. The goal in this case is an adhesive failure, rather than a cohesive failure.
Design of adhesive joints
A general design rule is a relation of the type: "Material Properties > Function (geometry, loads)"The engineering work will consist in having a
good model to evaluate the "Function". For most adhesive joints,
this can be achieved using fracture
mechanics. Concepts such as the stress concentration factor K
and the energy release rate G can be used to predict failure. In
such models, the behavior of the adhesive layer itself is neglected
and only the adherents are considered.
Failure will also very much depend on the opening
"mode" of the joint.* Mode I is an opening or tensile mode where
the loadings are normal to the crack.
- Mode II is a sliding or in-plane shear mode where the crack surfaces slide over one another in direction perpendicular to the leading edge of the crack. This is typically the mode for which the adhesive exhibits the higher resistance to fracture.
- Mode III is a tearing or antiplane shear mode.
As the loads are usually fixed, an acceptable
design will result from combination of a material selection
procedure and geometry modifications, if possible. In adhesively
bonded structures, the global geometry and loads are fixed by
structural considerations and the design procedure focuses on the
“material properties” of the adhesive (i.e. select a "good"
adhesive) and on local changes on the geometry.
Increasing the joint resistance is usually
obtained by designing its geometry so that:
- The bonded zone is large
- It is mainly loaded in mode II
- Stable crack propagation will follow the appearance of a local failure.
Testing the resistance of the adhesive
A wide range of testing devices have been imagined to evaluate the fracture resistance of bonded structures in pure mode I, pure mode II or in mixed mode. Most of these devices are beam type specimens. We will very shortly review the most popular:- Double Cantilever Beam tests (DCB) measure the mode I fracture resistance of adhesives in a fracture mechanics framework. These tests consist in opening an assembly of two beams by applying a force at the ends of the two beams. The test in unstable (i.e. the crack propagates along the entire specimen once a critical load is attained) and a modified version of this test characterised by a non constant inertia was proposed called the Tapered double cantilever beam specimen (TDCB). * Peel tests measure the fracture resistance of a thin layer bonded on a thick substrate or of two layers bonded together. They consist in measuring the force needed for tearing an adherent layer from a substrate or for tearing two adherent layers one from another. Whereas the structure is not symmetrical, various mode mixities can be introduced in these tests.
- Wedge tests measure the mode I dominated fracture resistance of adhesives used to bond thin plates. These tests consist in inserting a wedge in between two bonded plates. A critical energy release rate can be derived from the crack length during testing. This test is a mode I test but some mode II component can be introduced by bonding plates of different thicknesses.
- Mixed-Mode Delaminating Beam (MMDB) tests consist in a bonded bilayer with two starting cracks loaded on four points. The test presents roughly the same amount of mode I and mode II with a slight dependence on the ratio of the two layer thicknesses.
- End Notch Flexure tests consist in two bonded beams built-in on one side and loaded by a force on the other. As no normal opening is allowed, this device allows testing in essentially mode II condition.
- Crack Lap Shear (CLS) tests are application-oriented fracture resistance tests. They consist in two plates bonded on a limited length and loaded in tension on both ends. The test can be either symmetrical or dis-symmetrical. In the first case two cracks can be initiated and in the second only one crack can propagate.
References
External links
- DIYinfo.org's Glues, Adhesives, Sealants And Gap Fillers Wiki - Heaps of practical information on adhesives
- Adhesive and Sealant Council
- ASI Magazine
- New technology of bio-glue
- Adhesives Product News on ThomasNet Industrial Newsroom
glue in Arabic: مادة لاصقة
glue in Czech: Lepidlo
glue in German: Klebstoff
glue in Spanish: Adhesivo
glue in French: Adhésif
glue in Galician: Adhesivo
glue in Ido: Adherivo
glue in Indonesian: Lem
glue in Italian: Colla
glue in Hebrew: דבק
glue in Luxembourgish: Koll
glue in Lithuanian: Klijai
glue in Dutch: Lijmen
glue in Japanese: 接着剤
glue in Norwegian: Lim
glue in Polish: Klej
glue in Portuguese: Cola
glue in Russian: Клей
glue in Simple English: Glue
glue in Finnish: Liima
glue in Swedish: Lim
glue in Vietnamese: Keo
glue in Turkish: Tutkal
glue in Ukrainian: Клеї
glue in Chinese: 胶粘剂
Synonyms, Antonyms and Related Words
accouple, accumulate, adherent, adhesive, affix, agglutinate, albumen, amass, articulate, assemble, associate, band, barnacle, batter, bind, bond, bonnyclabber, bracket, bramble, braze, bridge, bridge over, brier, bulldog, burr, butter, cement, chain, clabber, clap together, collect, combine, comprise, concatenate, conglobulate, conjoin, conjugate, connect, copulate, cornstarch, couple, cover, cream, curd, decal, decalcomania, dough, egg white, embrace, encompass, fix, fuse, gather, gaum, gel, gelatin, glair, glop, gluten, goo, gook, goop, gruel, gum, gumbo, gunk, include, jam, jell, jelly, join, knot, lay together, league, leech, limpet, link, loblolly, lump together,
marry, marshal, mass, merge, mobilize, molasses, mucilage, mucus, pair, pap, paste, piece together, plaster, porridge, prickle, pudding, pulp, puree, put together, putty, remora, rob, roll into one, seal, semifluid, semiliquid, size, solder, soup, span, splice, starch, stick, stick together, sticker, sticky mess, syrup, take in, tape, thorn, tie, treacle, unify, unite, weld, yoke