Dictionary Definition
fax n : duplicator that transmits the copy by
wire or radio [syn: facsimile, facsimile
machine] v : send something via a facsimile machine; "Can you
fax me the report right away?" [syn: telefax, facsimile]
User Contributed Dictionary
Pronunciation
- Rhymes: -æks
Noun
- A document transmitted by telephone and printed by a fax machine or a fax machine itself.
Translations
document transmitted by telephone
- Alsatian: fax
- Burmese: ဖက္စ္
- Catalan: fax
- Chinese: 傳真 (chuán zhēn)
- Dutch: fax
- French: machine : fax , télécopieur ; document: fax , télécopie
- German: Fax
- Greek: Τηλεομοιοτυπία (tileomoiotypia or tileomiotipia) (el)
- Hebrew: פקס (faks)
- Italian: fax, telefax?
- Japanese: ファクシミリ (fakushimiri or huakusimiri)
- Korean: 팩스 (pæg.sŭ)
- Latin: facsimilis
- Luxemburgian: fax
- Polish: telefaks , faks
- Portuguese: fax
- Russian: факс (faks)
- Slovakian: fax
- Spanish: fax
Verb
- To send a document via a fax machine.
Translations
Latin
Noun
fax, facis- a torch
Old Norse
Etymology
From PIE *poḱ-s-, from the root *peḱ-.Noun
faxSpanish
Noun
Extensive Definition
Fax (short for facsimile, from Latin fac simile,
"make similar", i.e. "make a copy") is a telecommunications
technology used to transfer copies (facsimiles)
of documents, especially using affordable devices operating over
the telephone network.
The word telefax, short for telefacsimile, for "make a copy at a
distance", is also used as a synonym. Although fax is not an
acronym, it is often
erroneously written as such (“FAX”). The device is also known as a
telecopier in certain industries. When sending documents to people
at large distances, faxes have a distinct advantage over postal
mail in that the delivery is nearly instantaneous, yet its
disadvantages in quality have relegated it to a position beneath
email as the prevailing
form of electronic document transferral.
Overview
A "fax machine" usually consists of an image scanner, a modem, and also offered as options for many high-volume workgroup printers and photocopiers.Although devices for transmitting printed
documents electrically have existed, in various forms, since the
mid to late 19th century (see "History" below), modern fax machines
became feasible only in the mid-1970s as the
sophistication increased and cost of the three underlying
technologies dropped. Digital fax machines first became popular in
Japan, where
they had a clear advantage over competing technologies like the
teleprinter, since
at the time (before the development of easy-to-use input
method editors) it was faster to handwrite kanji than to type the characters.
Over time, faxing gradually became affordable, and by the
mid-1980s,
fax machines were very popular around the world.
Although many businesses still maintain some kind
of fax capability, the technology has faced increasing competition
from Internet-based
systems. However, fax machines still retain some advantages,
particularly in the transmission of sensitive material which, due
to mandates like Sarbanes-Oxley
and
HIPAA, cannot be sent over the Internet unencrypted. In some
countries, because digital
signatures on contracts are not recognized by law while faxed
contracts with copies of signatures are, fax machines enjoy
continuing popularity in business.
In many corporate environments, standalone fax
machines have been replaced by "fax servers"
and other computerized systems capable of receiving and storing
incoming faxes electronically, and then routing them to users on
paper or via secure email.
Such systems have the advantage of reducing costs by eliminating
unnecessary printouts and reducing the number of inbound analog
phone lines needed by an office.
Capabilities
There are several different indicators of fax capabilities: Group, class, data transmission rate, and conformance with ITU-T (formerly CCITT) recommendations.Fax machines utilize standard PSTN lines and
telephone numbers.
Group
Analog
Group 1 and 2 faxes were sent in the same manner as a frame of analog television, with each scanned line transmitted as a continuous analog signal. Horizontal resolution depended upon the quality of the scanner, transmission line, and the printer. Analog fax machines are obsolete and no longer manufactured. ITU-T Recommendations T.2 and T.3 were withdrawn as obsolete in July 1996.- Group 1 faxes conform to the ITU-T Recommendation T.2. Group 1 faxes take six minutes to transmit a single page, with a vertical resolution of 98 scan lines per inch. Group 1 fax machines are obsolete and no longer manufactured.
- Group 2 faxes conform to the ITU-T Recommendations T.30 and T.3. Group 2 faxes take three minutes to transmit a single page, with a vertical resolution of 100 scan lines per inch. Group 2 fax machines are almost obsolete, and are no longer manufactured. Group 2 fax machines can interoperate with Group 3 fax machines.
Digital
Group 3 and 4 faxes are digital formats, and take advantage of digital compression methods to greatly reduce transmission times.- Group 3 faxes conform to the ITU-T Recommendations T.30 and
T.4. Group 3 faxes take between six and fifteen seconds to transmit
a single page (not including the initial time for the fax machines
to handshake and synchronize). The horizontal and vertical
resolutions are allowed by the T.4 standard to vary among a set of
fixed resolutions:
- Horizontal: 100 scan lines per inch
- Vertical: 100 scan lines per inch
- Horizontal: 200 or 204 scan lines per inch
- Vertical: 100 or 98 scan lines per inch ('Standard')
- Vertical: 200 or 196 scan lines per inch ('Fine')
- Vertical: 400 or 391 (note not 392) scan lines per inch ('Superfine')
- Horizontal: 300 scan lines per inch
- Vertical: 300 scan lines per inch
- Horizontal: 400 or 408 scan lines per inch
- Vertical: 400 or 391 scan lines per inch ('Ultrafine')
- Horizontal: 100 scan lines per inch
- Group 4 faxes conform to the ITU-T Recommendations T.563, T.503, T.521, T.6, T.62, T.70, T.72, T.411 to T.417. They are designed to operate over 64 kbit/s digital ISDN circuits. Their resolution is determined by the T.6 recommendation, which is a superset of the T.4 recommendation.
Class
Computer modems are often designated by a particular fax class, which indicates how much processing is offloaded from the computer's CPU to the fax modem.- Class 1 fax devices do fax data transfer where the T.4/T.6 data compression and T.30 session management are performed by software on a controlling computer. This is described in ITU-T recommendation T.31.
- Class 2 fax devices perform T.30 session management themselves, but the T.4/T.6 data compression is performed by software on a controlling computer. The relevant ITU-T recommendation is T.32.
- Class 2.1 fax devices are referred to as "super G3"; they seem to be a little faster than the other 2 classes.
- Class 3 fax devices are responsible for virtually the entire fax session, given little more than a phone number and the text to send (including rendering ASCII text as a raster image). These devices are not common.
Data transmission rate
Several different telephone line modulation techniques are used by fax machines. They are negotiated during the fax-modem handshake, and the fax devices will use the highest data rate that both fax devices support, usually a minimum of 14.4 kbit/s for Group 3 fax.Note that 'Super Group 3' faxes use V.34bis modulation
that allows a data rate of up to 33.6 kbit/s.
Compression
As well as specifying the resolution (and allowable physical size of the image being faxed), the ITU-T T.4 recommendation specifies two compression methods for decreasing the amount of data that needs to be transmitted between the fax machines to transfer the image. The two methods are:- Modified Huffman (MH), and
- Modified READ (MR)
Modified Huffman
Modified Huffman (MH) is a codebook-based run-length encoding scheme optimised to efficiently compress whitespace. As most faxes consists mostly of white space, this minimises the transmission time of most faxes. Each line scanned is compressed independently of its predecessor and successor.Modified Read
Modified Read (MR) encodes the first scanned line using MH. The next line is compared to the first, the differences determined, and then the differences are encoded and transmitted. This is effective as most lines differ little from their predecessor. This is not continued to the end of the fax transmission, but only for a limited number of lines until the process is reset and a new 'first line' encoded with MH is produced. This limited number of lines is to prevent errors propagating throughout the whole fax, as the standard does not provide for error-correction. MR is an optional facility, and some fax machines do not use MR in order to minimise the amount of computation required by the machine. The limited number of lines is two for 'Standard' resolution faxes, and four for 'Fine' resolution faxes.The ITU-T T.6 recommendation adds a further
compression type of Modified
Modified READ (MMR), which simply allows for a greater number
of lines to be coded by MR than in T.4. This is because T.6 makes
the assumption that the transmission is over a circuit with a low
number of line errors such as digital ISDN. In this case, there is
no maximum number of lines for which the differences are
encoded.
Matsushita Whiteline Skip
A proprietary compression scheme employed on Panasonic fax machines is Matsushita Whiteline Skip (MWS). It can be overlaid on the other compression schemes, but is operative only when two Panasonic machines are communicating with one another. This system detects the blank scanned areas between lines of text, and then compresses several blank scan lines into the data space of a single character.Typical characteristics
Group 3 fax machines transfer one or a few printed or handwritten pages per minute in black-and-white (bitonal) at a resolution of 100x200 or 200x200 dots per inch. The transfer rate is 14.4 kilobits per second (kbit/s) or higher for modems and some fax machines, but fax machines support speeds beginning with 2400 bit/s and typically operate at 9600 bit/s. The transferred image formats are called ITU-T (formerly CCITT) fax group 3 or 4.The most basic fax mode transfers black and white
only. The original page is scanned in a resolution of 1728 pixels/line and 1145 lines/page
(for A4). The
resulting raw data is compressed
using a modified Huffman
code optimized for written text, achieving average compression
factors of around 20. Typically a page needs 10 s for transmission,
instead of about 3 minutes for the same uncompressed raw data of
1728×1145 bits at a speed of 9600 bit/s. The compression method
uses a Huffman codebook for run lengths of black and white runs in
a single scanned line, and it can also use the fact that two
adjacent scanlines are usually quite similar, saving bandwidth by
encoding only the differences.
Fax classes denote the way fax programs interact
with fax hardware. Available classes include Class 1, Class 2,
Class 2.0 and 2.1, and Intel CAS. Many modems support at least
class 1 and often either Class 2 or Class 2.0. Which is preferrable
to use depends on factors such as hardware, software, modem
firmware, and expected use.
Fax machines from the 1970s to the 1990s often
used direct thermal
printers as their printing technology, but since the mid-1990s
there has been a transition towards thermal
transfer printers, inkjet
printers and laser printers.
One of the advantages of inkjet printing is that
inkjets can affordably print in color; therefore, many of the
inkjet-based fax machines claim to have color fax capability. There
is a standard called ITU-T30e for
faxing in color; unfortunately, it is not yet widely supported, so
many of the color fax machines can only fax in color to machines
from the same manufacturer.
Fax paper
As a security precaution, thermal fax paper is typically not admissible as evidence in a court of law unless photocopied. This is because the ink used on fax papers are delible, brittle and tend to come off over long periods of storage.Alternatives
One popular alternative is to subscribe to an
internet
fax service. Fax service providers allow users to send and
receive faxes from their personal computers using an existing email
account. No software, fax server or fax machine is needed. Faxes
are received as attached .TIF or .PDF files, or in
proprietary formats that require the use of the service provider's
software. Faxes can be sent or retrieved from anywhere at any time
that a user can get internet access. Some services even offer
secure faxing to comply with stringent HIPAA and Gramm-Leach-Bliley
Act requirements to keep medical information and financial
information private and secure. Utilizing a fax service provider
does not require paper, a dedicated fax line, or consumables.
Another alternative to a physical fax machine is
to make use of computer software which allows people to
send and receive faxes using their own computers. See Fax server and
Unified
messaging.
History
Scottish inventor Alexander
Bain is often credited with the first fax patent in 1843. He used his
knowledge of electric clock pendulums to produce a
back-and-forth line-by-line scanning mechanism.
Frederick
Bakewell made several improvements on Bain's design and
demonstrated the device at the 1851 Great
Exhibition in London.
In 1861, the first fax
machine, the Pantelegraph,
was sold by Giovanni
Caselli, even before the invention of workable telephones.
As a designer for the
Radio Corporation of America (RCA), in 1924, Richard
H. Ranger invented the wireless photoradiogram, or transoceanic
radio facsimile, the
forerunner of today’s "Fax" machines. A photograph of President
Calvin
Coolidge sent from New York to London on November 29
1924 became
the first photo picture reproduced by transoceanic radio facsimile.
Commercial use of Ranger’s product began two years later. Radio fax
is still in common use today for transmitting weather charts and
information. Also in 1924, Herbert E.
Ives of AT&T
transmitted and reconstructed the first color facsimile, using
color separations.
An early method for facsimile transmission, the
Hellschreiber,
was invented in 1929 by Rudolf Hell,
a pioneer in mechanical image scanning and transmission.
Prior to the introduction of the once-ubiquitous
fax machine, one of the first being the Exxon Qwip in the
mid-1970s, facsimile machines worked by optical scanning of a
document or drawing spinning on a drum. The reflected light,
varying in intensity according to the light and dark areas of the
document, was focused on a photocell so that the current
in a circuit would vary with the amount of light. This current was
used to control a tone generator (a modulator), the current
determining the frequency of the tone produced. This audio tone was
then transmitted using an acoustic
coupler (a speaker, in this case) attached to the microphone of
a common telephone handset.
At the receiving end, a handset’s speaker was attached to an
acoustic coupler (a microphone), and a demodulator converted the
varying tone into a variable current which controlled the
mechanical movement of a pen or pencil to reproduce the image on a
blank sheet of paper on an identical drum rotating at the same
rate. A pair of these expensive and bulky machines could only be
afforded by companies with a serious need to communicate drawings,
design sketches or signed documents between distant locations, such
as an office and factory. In 1985, Dr. Hank
Magnuski, founder of GammaLink,
produced the first computer fax board, called GammaFax.
See also
- 3Dfax
- Black fax
- Called Subscriber Identification (CSID)
- Error correction mode (ECM)
- Fax-over-IP T.38
- Fax server
- Faxlore
- Fultograph
- Junk fax
- Telautograph
- Transmitting Subscriber Identification (TSID)
External links
- A Brief History of Facsimile, at HFFAX wireless facsimile site
- The historical evolution of Fax, at technikum29, museum of calculator, computer and communication technology
- Group 3 Facsimile Communication a '97 essay with technical details on compression and error codes, and call establishment and release.
- Types of Fax Machines Different type of fax machines by Grouping, Data Transmission speed.
fax in Arabic: فاكس
fax in Breton: Pelleiler
fax in Bulgarian: Факс
fax in Czech: Fax
fax in German: Fax
fax in Modern Greek (1453-):
Τηλεομοιοτυπία
fax in Spanish: Fax
fax in Esperanto: Fakso
fax in French: Télécopieur
fax in Italian: Telefax
fax in Hebrew: פקס
fax in Dutch: Fax
fax in Japanese: ファクシミリ
fax in Korean: 팩시밀리
fax in Norwegian: Telefaks
fax in Polish: Telefaks
fax in Portuguese: Fax
fax in Romanian: Fax
fax in Russian: Факс
fax in Slovak: Fax (zariadenie)
fax in Slovenian: Telefaks
fax in Finnish: Faksi
fax in Swedish: Telefax
fax in Thai: โทรสาร
fax in Turkish: Belgegeçer
fax in Urdu: نسخۂ کامل
fax in Samogitian: Faksos
fax in Chinese: 傳真機