Dictionary Definition
eyepiece n : combination of lenses at the viewing
end of optical instruments [syn: ocular]
User Contributed Dictionary
English
Noun
- The lens (or combination of lenses) at the eye end of a microscope or telescope by which the image is viewed.
Extensive Definition
- For the device for looking through a camera, see viewfinder.
An eyepiece, or ocular lens, is a type of lens
that is attached to a variety of optical devices such as telescopes
and microscopes. It
is so named because it is usually the lens that is closest to the
eye when someone looks through the device. The objective
lens or mirror collects light and brings it to focus creating an
image. The eyepiece is placed at the focal point
of the objective to magnify this image. The amount of magnification
depends on the focal length
of the eyepiece.
An eyepiece consists of several "lens
elements" in a housing, with a "barrel" on one end. The barrel is
shaped to fit in a special opening of the instrument to which it is
attached. The image can be focused by
moving the eyepiece nearer and further from the objective. Most
instruments have a focusing mechanism to allow movement of the
shaft in which the eyepiece is mounted, without needing to
manipulate the eyepiece directly.
The eyepieces of binoculars are usually
permanently mounted in the binoculars, causing them to have a
pre-determined magnification and field of view. With telescopes and
microscopes, however, eyepieces are usually interchangeable. By
switching the eyepiece, the user can adjust what is viewed. For
instance, eyepieces will often be interchanged to increase or
decrease the magnification of a telescope. Eyepieces also offer
varying fields of
view, and differing degrees of eye relief for
the person who looks through them.
Modern research-grade telescopes do not use
eyepieces. Instead, they have high-quality CCD sensors
mounted at the focal point, and the images are viewed on a computer
screen. Some amateur
astronomers use their telescopes the same way, but direct
optical viewing with eyepieces is still very common.
Eyepiece properties
Several properties of an eyepiece are likely to be of interest to a user of an optical instrument, when comparing eyepieces and deciding which eyepiece suits their needs.Design distance to entrance pupil
Eyepieces are optical systems where the entrance pupil is invariably located outside of the system. They must be designed for optimal performance for a specific distance to this entrance pupil (i.e. with minimum aberrations for this distance). In a refracting astronomical telescope the entrance pupil is identical with the objective. This may be several feet distant from the eyepiece; whereas with a microscope eyepiece the entrance pupil is close to the back focal plane of the objective, mere inches from the eyepiece. Microscope eyepieces may be corrected differently from telescope eyepieces; however, most are also suitable for telescope use.Elements and groups
Elements are the individual lenses, which may come as simple lenses or "singlets" and cemented doublets or (rarely) triplets. When lenses are cemented together in pairs or triples, the combined elements are called groups (of lenses).The first eyepieces had only a single lens
element, which delivered highly distorted images. Two and
three-element designs were invented soon after, and quickly became
standard due to the improved image quality. Today, engineers
assisted by computer-aided drafting software have designed
eyepieces with seven or eight elements that deliver exceptionally
large, sharp views.
Internal reflection and scatter
Internal reflections, sometimes called scatter, cause the light passing through an eyepiece to disperse and reduce the contrast of the image projected by the eyepiece. When the effect is particularly bad, "ghost images" are seen, called ghosting. For many years, simple eyepiece designs with a minimum number of internal air-to-glass surfaces were preferred to avoid this problem.One solution to scatter is to use thin film
coatings over the surface of the element. These thin coatings are
only one or two wavelengths deep, and work to
reduce reflections and scattering by changing the refraction of the light
passing through the element. Some coatings may also absorb light
that is not being passed through the lens in a process called
total
internal reflection where the light incident on the film is at
a shallow angle.
Chromatic aberration
Lateral chromatic aberration is caused because the refraction at glass surfaces differs for light of different wavelengths. Blue light, seen through an eyepiece element, will not focus to the same plane as red light. The effect can create a ring of false colour around point sources of light and results in a general blurriness to the image.One solution is to reduce the aberration by using
multiple elements of different types of glass. Achromats are lens
groups that bring two different wavelengths of light to the same
focus and exhibit greatly reduced false colour. Low dispersion
glass may also be used to reduce chromatic aberration.
Longitudinal chromatic aberration is a pronounced
effect of optical
telescope objectives, because the focal lengths are so long.
Microscopes, whose focal lengths are generally shorter, do not tend
to suffer from this effect.
Focal length
The focal length of an eyepiece is the distance from the principal plane of the eyepiece where parallel rays of light converges to a single point. When in use, the focal length of an eyepiece, combined with the focal length of the telescope or microscope objective, to which it is attached, determines the magnification. It is usually expressed in millimetres when referring to the eyepiece alone. When interchanging a set of eyepieces on a single instrument, however, some users prefer to refer to identify each eyepiece by the magnification produced.For a telescope, the angular magnification
produced by the combination of a particular eyepiece and objective
can be calculated with the following formula:
- \mathrm= \frac
- \mathrm is the calculated angular magnification.
- f_O is the focal length of the objective.
- f_E is the focal length of the eyepiece, expressed in the same units of measurement as f_T.
Magnification increases, therefore, when the
focal length of the eyepiece is shorter or the focal length of the
objective is longer. For example, a 25 mm eyepiece in a telescope
with a 1200 mm focal length would magnify objects 48 times. A 4 mm
eyepiece in the same telescope would magnify 300 times.
Amateur astronomers tend to refer to telescope
eyepieces by their focal length in millimetres. These typically
range from about 3 mm to 50 mm. Some astronomers, however, prefer
to specify the resulting magnification power rather than the focal
length. It is often more convenient to express magnification in
observation reports, as it gives a more immediate impression of
what view the observer actually saw. Due to its dependence on
properties of the particular telescope in use, however,
magnification power alone is meaningless for describing a telescope
eyepiece.
For a compound microscope the corresponding
formula is
- \mathrm= \frac = \frac \times \frac
- D is the distance of closest distinct vision (usually 250 mm)
- D_\mathrm is the distance between the back focal plane of the objective and the back focal plane of the eyepiece (called tube length), typically 160 mm for a modern instrument.
- f_O is the objective focal length and F_E is the eyepiece focal length.
By convention, microscope eyepieces are usually
specified by power instead of focal length. Microscope eyepiece
power P_\mathrm and objective power P_\mathrm are defined by
- P_\mathrm = \frac, \qquad P_\mathrm = \frac
- \mathrm = P_\mathrm \times P_\mathrm
The total angular magnification of a microscope
image is then simply calculated by multiplying the eyepiece power
by the objective power. For example, a 10× eyepiece with a 40×
objective will magnify the image 400 times.
This definition of lens power relies upon an
arbitrary decision to split the angular magnification of the
instrument into separate factors for the eyepiece and the
objective. Historically, Abbe described microscope eyepieces
differently, in terms of angular magnification of the eyepiece and
'initial magnification' of the objective. While convenient for the
optical designer, this turned out to be less convenient from the
viewpoint of practical microscopy and was thus subsequently
abandoned.
The generally-accepted visual distance of closest
focus D is 250 mm, and eyepiece power is normally specified
assuming this value. Common eyepiece powers are 8×, 10×, 15×, and
20×. The focal length of the eyepiece (in mm) can thus be
determined if required by dividing 250mm by the eyepiece
power.
Modern instruments often use objectives
optically-corrected for an infinite tube length rather than 160mm,
and these require an auxiliary correction lens in the tube.
Location of focal plane
In some eyepiece types, such as Ramsden eyepieces (described in more detail below), the eyepiece behaves as a magnifier, and its focal plane is located outside of the eyepiece in front of the field lens. This plane is therefore accessible as a location for a graticule or micrometer crosswires. In the Huygenian eyepiece, the focal plane is located between the eye and field lenses, inside the eyepiece, and is hence not accessible.Field of view
The field of view, often abbreviated FOV, describes the area of a target (measured as an angle from the location of viewing) that can be seen when looking through an eyepiece. The field of view seen through an eyepiece varies, depending on the magnification achieved when connected to a particular telescope or microscope, and also on properties of the eyepiece itself. Eyepieces are differentiated by their field stop, which is the narrowest aperture that light entering the eyepiece must pass through to reach the field lens of the eyepiece.Due to the effects of these variables, the term
"field of view" nearly always refers to one of two meanings:
;Apparent field of view: a derived constant value for a given
eyepiece. By itself, the apparent field of view is only an abstract
value, but it can be used to calculate what the actual field of
view will be when the eyepiece is combined with a telescope to
produce a particular magnification. The measurement ranges from 35
to over 80 degrees.
The apparent field of view of an eyepiece is often stated in
eyepiece specifications, as it provides a convenient method for a
user to calculate the actual field of view with their own
telescope.
It is common for users of an eyepiece to want to
calculate the actual field of view, because it indicates how much
of the sky will be visible when the eyepiece is used with their
telescope. The most convenient method of calculating the actual
field of view depends on whether the apparent field of view is
known.
If the apparent field of view is known, the
actual field of view can be calculated from the following
approximate formula:
- FOV_C= \frac
-
- or
- FOV_C= \frac
- FOV_C is the actual field of view, calculated in the unit of angular measurement in which FOV_P is provided.
- FOV_P is the apparent field of view.
- mag is the magnification.
- f_T is the focal length of the telescope.
- f_E is the focal length of the eyepiece, expressed in the same units of measurement as f_T.
The focal length of the telescope objective is
the diameter of the objective times the focal ratio.
It represents the distance at which the mirror or objective lens
will cause light to converge on a single point.
The formula is accurate to 4% or better up to 40°
apparent field of view, and has a 10% error for 60°.
If the apparent field of view is unknown, the
actual field of view can be approximately found using:
- FOV_C= \frac
- FOV_C is the actual field of view, calculated in degrees.
- d is the diameter of the eyepiece field stop in mm.
- f_T is the focal length of the telescope, in mm.
The second formula is actually more accurate, but
field stop size is not usually specified by most manufacturers. The
first formula will not be accurate if the field is not flat, or is
higher than 60° which is common for most ultra-wide eyepiece
design.
Barrel diameter
Eyepieces for telescopes and microscopes are usually interchanged to increase or decrease the magnification and to allow the user to select a type with a certain performance characteristic. To allow this eyepieces come in standardized "Barrel diameters".Telescope eyepieces
There are three standard barrel diameters for telescopes. The barrel sizes are usually expressed using inches.- The smallest standard telescope barrel diameter is 0.965 inches (24.5 mm), but has been largely abandoned. The only telescopes still manufactured that use this size are poor-quality telescopes usually found in toy stores and shopping malls. Many of these eyepieces that come with such telescopes are plastic, and some even have plastic lenses. High-quality telescope eyepieces with this barrel size are no longer manufactured.
- The most popular telescope eyepiece barrel diameter is 1¼ inches (31.75 mm). The practical upper limit on focal lengths for eyepieces with 1¼ inch (31.75mm) barrels is about 32 mm. With longer focal lengths, the edges of the barrel itself intrude into the view limiting its size. With focal lengths longer than 32 mm, the available field of view falls below 50°, which most amateurs consider to be the minimum acceptable width. These barrel sizes are threaded to take 30 mm filters.
- Telescope eyepieces with 2 inch (50.8 mm) barrels are also available. The Larger 2 inch (50.8 mm) size helps alleviate the limit on focal lengths. The upper limit of focal length with 2 inch eyepieces is about 50 mm. The trade-off is that these eyepieces are usually more expensive, won't fit in some telescopes, and may be heavy enough to tip the telescope. These barrel sizes are threaded to take 48 mm filters (or rarely 49 mm).
Microscope eyepieces
Microscopes have standard barrel diameters measured in millimeters: 23.2 mm and 30 mm, slightly smaller than telescope barrels.Eye relief
The eye needs to be held at a certain distance behind the eye lens of an eyepiece to see images properly through it. This distance is called the eye relief. A larger eye relief means that the optimum position is further from the eyepiece, making it easier to view an image. However, if the eye relief is too large it can be uncomfortable to hold the eye in the correct position for an extended period of time, for which reason some eyepieces with long eye relief have cups behind the eye lens to aid the observer in maintaining the correct observing position. The eye pupil should coincide with the Ramsden disc, the image of the entrance pupil, which in the case of an astronomical telescope corresponds to the object glass.Eye relief typically ranges from about 2 mm to 20
mm, depending on the construction of the eyepiece. Long
focal-length eyepieces usually have ample eye relief, but short
focal-length eyepieces are more problematic. Until recently, and
still quite commonly, eyepieces of a short-focal length have had a
short eye relief. Good design guidelines suggest a minimum of 5–6
mm to accommodate the eyelashes of the observer to avoid
discomfort. Modern designs with many lens elements, however, can
correct for this, and viewing at high power becomes more
comfortable. This is especially the case for spectacle wearers,
who may need up to 20 mm of eye relief to accommodate their
glasses.
Eyepiece designs
Technology has developed over time and there are a variety of eyepiece designs for use with optical telescopes. They vary in their internal lens configuration and different designs are sometimes more appropriate both for different types of viewing, and for different types of telescope. Eyepiece designs include Huygens, Ramsden, Kellner, Orthoscopic, Erfle, König, Plössl, RKE, and Nagler. These are described in more detail below.Huygens
The two element Huygens eyepiece was invented by Christiaan Huygens in the 17th century. This optical design is now considered obsolete. Their main use in optics is as an example of the simplest possible compound lens design.Despite being deprecated, these eyepieces are
inexpensive to make and so are often sold with the cheapest
telescopes and microscopes. Huygens eyepieces suffer from short eye
relief, high image distortion (especially on short focus
telescopes), chromatic aberration and have very narrow apparent
field of view.
Essentially their only good use is for projection
of a solar image onto a screen. Because Huygens eyepieces do not
contain cement to hold the lens elements, they are less likely to
be damaged by the intense, concentrated light of sun. Lens cement
can overheat and either dissolve or burn.
Huygens eyepieces consist of two
plano-convex lenses with the plane sides towards the eye
separated by an air gap. The lenses are called the eye lens and the
field lens. It is usually designed for zero transverse chromatic
aberration. The focal plane is located between the two lenses. If
the lenses are made of glass of the same refractive index, to be
used with a relaxed eye and a telescope with an infinitely distant
objective then the separation is given by: d= \frac (f_A + f_B)
where f_A and f_B are the focal lengths of the component
lenses.
Ramsden
The Ramsden eyepiece, created by astronomical and scientific instrument maker Jesse Ramsden in the 18th century, comprises two plano convex lenses with the same focal length and glass, placed less than one focal length apart. The separation varies between different designs, but is typically somewhere between 7/10 and 7/8 of the focal length of the lenses, the choice being a trade off between residual transverse chromatic aberration (at low values) and at high values running the risk of the field lens touching the focal plane when used by an observer who works with a close virtual image such as a myopic observer, or a young person whose accommodation is able to cope with a close virtual image (this is a serious problem when used with a micrometer as it can result in damage to the instrument).A separation of exactly 1 focal length is also
inadvisable since it renders the dust on the field lens
disturbingly in focus. The two curved surfaces face inwards. The
focal plane is thus located outside of the eyepiece and is hence
accessible as a location where a graticule, or micrometer
crosshairs may be placed. Because a separation of exactly one focal
length would be required to correct transverse chromatic
aberration, it is not possible to correct the Ramsden design
completely for transverse chromatic aberration. The design is
slightly better than Huygens but still not up to today’s
standards.
It remains highly suitable for use with
instruments operating using near monochromatic light sources e.g.
polarimeters.
Kellner or "Achromat"
Carl Kellner designed this first modern achromatic eyepiece in 1850, also called an "achromatized Ramsden". Kellner eyepieces are a 3-lens design. An achromatic doublet is used in place of the eye lens in the Ramsden design to correct the residual transverse chromatic aberration. They are inexpensive and have fairly good image from low to medium power and are far superior to Huygenian or Ramsden design. The biggest problem of Kellner eyepieces was internal reflections. Today's anti-reflection coatings make these usable, economical choices for small to medium aperture telescopes with focal ratio f/6 or longer.Abbe or "Ortho"
The 4-element Abbe eyepiece was invented by Ernst Abbe in 1880, and is called "orthoscopic" or "orthographic" because of its low degree of distortion; usually the eyepiece is simply called an "ortho". The Abbe design uses a convex-convex triplet field lens and a convex-flat singlet eye lens. Orthos have nearly perfect image quality and good eye relief, but a little bit narrow apparent field of view — about 40°–45°.Until the advent of multicoatings and the
popularity of the Plössl, orthos
were the most popular design for telescope eyepieces. Even today
these eyepieces are superior to most others for planetary and lunar
viewing.
Erfle
Erfles were invented during the first world war for military purposes, described in US patent by Heinrich Erfle number 1,478,704 of Aug 1921. They are a 5-element design which is a logical extension to wider fields of the four lens military eyepiece design. In effect, they are Plössls with extra lenses.Erfle eyepieces are designed to have wide field
of view (about 60 degrees), but they are unusable at high powers
because they suffer from astigmatism and ghost
images. However, with lens
coatings at low powers (focal
lengths of 20 mm and up) they are acceptable, and at 40 mm they
can be excellent. Erfles are very popular because they have large
eye lenses, good eye relief and can be very comfortable to
use.
König
The König eyepiece was designed in 1915 by German optician Albert König (1871−1946). The original design is a simplified Abbe, with a leading doublet instead of a triplet. The original design allows for high magnification with remarkably high eye relief — the highest eye relief proportional to focal length of any design before the Nagler, in 1979. The field of view of about 55° makes its performance similar to the Plössl, with the advantage of requiring one less lens.König's original 1915 form is the simplest, and
is composed of two lens groups: a concave-convex positive doublet
and a convex~flat positive singlet. The
strongly convex surfaces of the doublet and singlet face and
(nearly) touch each other. The doublet has its concave surface
facing the light source and the singlet has its almost flat
(slightly convex) surface facing the eye.
Modern versions of Königs can use improved glass,
or add more lenses, grouped into various combinations doublets
and singlets. The most typical adaptation is to add a positive,
concave-convex simple lens
before the doublet,
with the concave face towards the light source and the convex
surface facing the doublet. Modern improvements typically have
fields of view of 60°−70°.
Plössl
Originally designed by Georg Simon Plössl in 1860, several versions can be found on the amateur astronomy market. By far the Plössl eyepiece is currently the most widely used design. The name Plössl eyepiece covers a range of eyepieces with at least four optical elements. Usually consisting of two sets of doublets, a convex and concave element sandwiched together, the lens provides a large apparent field of view along with relatively large FOV. This makes this lens ideal for a variety of observational purposes including deep sky and planetary viewing.The chief disadvantage of the Plössl optical
design is short eye relief,
which is restricted to about 70-80% of focal length. The short eye
relief is more critical in short focal lengths, when viewing can
become uncomfortable.
This eyepiece is one of the more expensive to
manufacture because of the quality of glass, and the need for well
matched convex and concave lenses to prevent internal reflections.
Due to this fact, the quality of different Plössl eyepieces varies.
There are notable differences between cheap Plössls with simplest
anti-reflection
coatings and well made ones.
RKE
An RKE eyepiece is an adaptation of a Kellner eyepiece designed by Dr. David Rank for the Edmund Scientific Corporation, who marketed it throughout the late 1960s and early 1970s. This design provides slightly wider field of view than classic Kellner design.There is some ambiguity about what RKE stands
for. According to an e-mail from
Edmund, RKE stands for Rank Kellner Eyepiece. Others speculate
it stands for Rank Kellner Edmund or Reversed Kellner Eyepiece; the
latter because the elements within the eyepiece in effect have been
reversed from the Kellner design on which it is based. This
arrangement makes the design similar to a widely spaced version of
the König
design.
Nagler
Invented by Albert Nagler and patented in 1979, the Nagler eyepiece is a design optimized for astronomical telescopes to give an ultra-wide field of view (82°) that has good correction for astigmatism and other aberrations. This is achieved using exotic high-index glass and up to eight optical elements in 4 or 5 groups; there are 5 similar designs called the Nagler, Nagler type 2, Nagler type 4, Nagler type 5, Nagler type 6.The number of elements in a Nagler makes them
seem complex, but the idea of the design is fairly simple: every
Nagler has a negative doublet
field lens, which increases magnification, followed by several
positive groups. The positive groups, considered separate from the
first negative group, combine to have long focal length, and form a
positive lens. That allows the design to take advantage of the many
good qualities of low power lenses. In effect, a Nagler is a
superior version of a Barlow lens
combined with a long focal length
eyepiece. This design has been widely copied in other wide
field or long eye relief
eyepieces.
The main disadvantage to Naglers is in their
weight. Long focal length versions exceed 0.5 kg, which is enough
to unbalance many telescopes. Amateurs fondly refer to Naglers as
"paperweights", because of their heft, or "hand grenades", because
of their size and shape. Another disadvantage is a high purchase
cost, with large Naglers' prices comparable to the cost of a small
telescope. Hence these eyepieces are regarded by many amateur
astronomers as a luxury. http://www.company7.com/televue/telal.html
References
- A. E. Conrady, Applied Optics and Optical Design, Volume I. Oxford 1929.
- R. Kingslake, Lens Design Fundamentals. Academic Press 1978.
- H. Rutten and M. van Venrooij, Telescope Optics. Willmann-Bell 1988, 1989. ISBN 0-943396-18-2.
External links
- In-depth discussion of various design and theoretical background
- A list of eyepieces with some details of their construction.
- A list of eyepieces with some details of their construction.
- A list of eyepieces with some details of their construction.
- Demonstrates the effect of eyepieces
eyepiece in Asturian: Ocular
eyepiece in Danish: Okular
eyepiece in German: Okular
eyepiece in Spanish: Ocular
eyepiece in French: Oculaire
eyepiece in Croatian: Okular
eyepiece in Italian: Oculare
eyepiece in Lithuanian: Okuliaras
eyepiece in Dutch: Oculair
eyepiece in Japanese: 接眼レンズ
eyepiece in Polish: Okular
eyepiece in Portuguese: Lente ocular
eyepiece in Russian: Окуляр
eyepiece in Slovak: Okulár
eyepiece in Serbian: Окулар
eyepiece in Finnish: Okulaari
eyepiece in Swedish: Okular
eyepiece in Chinese: 目镜