Dictionary Definition
electrostatic adj : concerned with or producing
or caused by static electricity; "an electrostatic generator
produces high-voltage static electricity" [syn: static]
User Contributed Dictionary
English
Adjective
- of, relating to, or produced by electrostatics or static electricity
Derived terms
Extensive Definition
- For a less technical introduction see Static electricity
The force F imposed by a charge Q on a probe q is
proportional to the
charge of the probe. That is, it can be described by the equation
F=q·E, what defines the electric
field E.
The electrostatic approximation
The validity of the electrostatic approximation rests on the assumption that the electric field is irrotational:- \vec\times\vec = 0.
From
Faraday's law, this assumption implies the absence or
near-absence of time-varying magnetic fields:
- = 0.
In other words, electrostatics does not require
the absence of magnetic fields or electric currents. Rather, if
magnetic fields or electric currents do exist, they must not change
with time, or in the worst-case, they must change with time only
very slowly. In some problems, both electrostatics and magnetostatics may be
required for accurate predictions, but the coupling between the two
can still be ignored.
Electrostatic potential
Because the electric field is irrotational, it is possible to express the electric field as the gradient of a scalar function, called the electrostatic potential (also known as the voltage). An electric field, E, points from regions of high potential, φ, to regions of low potential, expressed mathematically as- \vec = -\vec\phi.
Fundamental concepts
Coulomb's law
Electric Potential is the amount of work done per unit charge, in bringing an unit positive charge from infinity to that point. The fundamental equation of electrostatics is Coulomb's law, which describes the force between two point charges The magnitude of the electrostatic force between two point electric charges is directly proportional to the product of the magnitudes of each charge and inversely proportional to the square of the distance between the charges.Q_1 and Q_2:- \vec = \frac\hat\ ,
where ε0 is the electric
constant, a defined value:
The electric field
The electric field (in units of volts per meter) is defined as the force (in newtons) per unit charge (in coulombs). From this definition and Coulomb's law, it follows that the magnitude of the electric field E created by a single point charge Q is- \vec = \frac\hat.
Gauss's law
Gauss' law states that "the total electric flux through a closed surface is proportional to the total electric charge enclosed within the surface". The constant of proportionality is the permittivity of free space.Mathematically, Gauss's law takes the form of an
integral equation:
- \oint_S\varepsilon_0\vec \cdot\mathrm\vec = \int_V\rho\cdot\mathrmV.
Alternatively, in differential form, the equation
becomes
- \vec\cdot\varepsilon_0\vec = \rho.
Poisson's equation
The definition of electrostatic potential, combined with the differential form of Gauss's law (above), provides a relationship between the potential φ and the charge density ρ:- ^2 \phi = - .
This relationship is a form of Poisson's
equation. Where is Vacuum permittivity.
Laplace's equation
In the absence of unpaired electric charge, the equation becomes- ^2 \phi = 0,
which is Laplace's
equation.
Triboelectric series
The triboelectric
effect is a type of contact electrification in which certain
materials become electrically charged when coming into contact with
another, different, material, and are then separated. The polarity
and strength of the charges produced differ according to the
materials, surface roughness, temperature, strain, and other
properties. It is therefore not very predictable, and only broad
generalizations can be made. Amber, for example, can acquire an
electric charge by friction with a material like wool. This
property, first recorded by Thales of
Miletus, suggested the word "electricity", from the Greek word
for amber, èlectròn. Other examples of materials that can acquire a
significant charge when rubbed together include glass rubbed with
silk, and hard rubber rubbed with fur.
Electrostatic generators
The presence of surface charge imbalance means that the objects will exhibit attractive or repulsive forces. This surface charge imbalance, which yields static electricity, can be generated by touching two differing surfaces together and then separating them due to the phenomena of contact electrification and the triboelectric effect. Rubbing two nonconductive objects generates a great amount of static electricity. This is not just the result of friction; two nonconductive surfaces can become charged by just being placed one on top of the other. Since most surfaces have a rough texture, it takes longer to achieve charging through contact than through rubbing. Rubbing objects together increases amount of adhesive contact between the two surfaces. Usually insulators, e.g., substances that do not conduct electricity, are good at both generating, and holding, a surface charge. Some examples of these substances are rubber, plastic, glass, and pith. Conductive objects only rarely generate charge imbalance except, for example, when a metal surface is impacted by solid or liquid nonconductors. The charge that is transferred during contact electrification is stored on the surface of each object. Static electric generators, devices which produce very high voltage at very low current and used for classroom physics demonstrations, rely on this effect.Note that the presence of electric
current does not detract from the electrostatic forces nor from
the sparking, from the corona
discharge, or other phenomena. Both phenomena can exist
simultaneously in the same system.
- See also: Friction machines, Wimshurst machines, and Van de Graaf generators.
Charge neutralization
Natural electrostatic phenomena are most familiar as an occasional annoyance in seasons of low humidity, but can be destructive and harmful in some situations (e.g. electronics manufacturing). When working in direct contact with integrated circuit electronics (especially delicate MOSFETs), or in the presence of flammable gas, care must be taken to avoid accumulating and suddenly discharging a static charge (see electrostatic discharge).Charge induction
Charge induction occurs when a negatively charged object repels electrons from the surface of a second object. This creates a region in the second object that is more positively charged. An attractive force is then exerted between the objects. For example, when a balloon is rubbed, the balloon will stick to the wall as an attractive force is exerted by two oppositely charged surfaces (the surface of the wall gains an electric charge due to charge induction, as the free electrons at the surface of the wall are repelled by the negative balloon, creating a positive wall surface, which is subsequently attracted to the surface of the balloon). You can explore the effect with a simulation of the balloon and static electricity.'Static' electricity
Before the year 1832, when Michael Faraday published the results of his experiment on the identity of electricities, physicists thought "static electricity" was somehow different from other electrical charges. Michael Faraday proved that the electricity induced from the magnet, voltaic electricity produced by a battery, and static electricity are all the same.Static electricity is usually caused when certain
materials are rubbed against each other, like wool on plastic or
the soles of shoes on carpet. The process causes electrons to be
pulled from the surface of one material and relocated on the
surface of the other material.
A static shock occurs when the surface of the
second material, negatively charged with electrons, touches a
positively-charged conductor. Or Vice-Versa.
Static electricity is commonly used in xerography, air filters,
and some automotive paints. Static electricity is a build up of
electric charges on two objects that have become separated from
each other. Small electrical components can easily be damaged by
static electricity. Component manufactures use a number of antistatic
devices to avoid this.
Static electricity and chemical industry
When different materials are brought together and
then separated, an accumulation of electric charge can occur which
leaves one material positively charged while the other becomes
negatively charged. The mild shock that you receive when touching a
grounded object after walking on carpet is an example of excess
electrical charge accumulating in your body from frictional
charging between your shoes and the carpet. The resulting charge
build-up within your body can generate a strong electrical
discharge. Although experimenting with static electricity may be
fun, similar sparks create severe hazards in those industries
dealing with flammable substances, where a small electrical spark
may ignite explosive mixtures with devastating consequences.
A similar charging mechanism can occur within low
conductivity fluids flowing through pipelines - a process called
flow electrification. Fluids which have low electrical conductivity
(below 50 pico siemens/cm, where pico siemens/cm is a measure of
electrical conductivity), are called accumulators. Fluids having
conductivities above 50 pico siemens/cm are called
non-accumulators. In non-accumulators, charges recombine as fast as
they are separated and hence electrostatic charge generation is not
significant. In the petrochemical industry, 50 pico siemens/cm is
the recommended minimum value of electrical conductivity for
adequate removal of charge from a fluid.
An important concept for insulating fluids is the
static relaxation time. This is similar to the time constant (tau)
within an RC circuit.
For insulating materials, it is the ratio of the static dielectric
constant divided by the electrical conductivity of the
material. For hydrocarbon fluids, this is sometimes approximated by
dividing the number 18 by the electrical conductivity of the fluid.
Thus a fluid that has an electrical conductivity of 1 pico siemens
/cm will have an estimated relaxation time of about 18 seconds. The
excess charge within a fluid will be almost completely dissipated
after 4 to 5 times the relaxation time, or 90 seconds for the fluid
in the above example.
Charge generation increases at higher fluid
velocities and larger pipe diameters, becoming quite significant in
pipes or larger. Static charge generation in these systems is best
controlled by limiting fluid velocity. The British standard BS PD
CLC/TR 50404:2003 (formerly BS-5958-Part 2) Code of Practice for
Control of Undesirable Static Electricity prescribes velocity
limits. Because of its large impact on dielectric constant, the
recommended velocity for hydrocarbon fluids containing water should
be limited to 1 m/s.
Bonding and earthing are the usual ways by which
charge buildup can be prevented. For fluids with electrical
conductivity below 10 pico siemens/cm, bonding and earthing are not
adequate for charge dissipation, and anti-static additives may be
required.
Applicable Standards
1.BS PD CLC/TR 50404:2003 Code of Practice for
Control of Undesirable Static Electricity
2.NFPA 77 (2007) Recommended Practice on Static
Electricity
3.API RP 2003 (1998) Protection Against Ignitions
Arising Out of Static, Lightning, and Stray Currents
See also
*ElectromagnetismReferences
- Experimental Researches in Electricity
- Physics
- Introduction to Electrodynamics
- Electromagnetic Fields and Energy
External links and further reading
* RMCybernetics: High Voltage Physics. Homemade projects & experiments.- "Man's static jacket sparks alert". BBC News, 16 September 2005.
- Static Electricity and Plastics
- "Can shocks from static electricity damage your health?". Wolfson Electrostatics News pages.
- Invisible wall of static:
- William J. Beaty, "Humans and sparks; The Cause, Stopping the Pain, and 'Electric People". 1997.
- Harold Aspden, "Can Gravity be an Electrostatic Force? - A Quantum theory of Gravitation". 2005.
- William Cecil Dampier, "The theory of experimental electricity". Cambridge [Eng.] University press, 1905 (Cambridge physical series). xi, 334 p. illus., diagrs. 23 cm. LCCN 05040419 //r33
- William Thomson Kelvin, Reprint of Papers on Electrostatics and Magnetism By William Thomson Kelvin, Macmillan 1872
- Alexander McAulay Utility of Quaternions in Physics. Electrostatics—General Problem. Macmillan 1893
- Alexander Russell, A Treatise on the Theory of Alternating Currents. Electrostatics. University Press 1904
electrostatic in Bulgarian: Електростатика
electrostatic in Catalan: Electrostàtica
electrostatic in Czech: Elektrostatika
electrostatic in German: Elektrostatik
electrostatic in Spanish: Electrostática
electrostatic in Esperanto: Elektrostatiko
electrostatic in French: Électrostatique
electrostatic in Galician: Electrostática
electrostatic in Indonesian: Elektrostatik
electrostatic in Italian: Elettrostatica
electrostatic in Lithuanian:
Elektrostatika
electrostatic in Dutch: Elektrostatica
electrostatic in Polish: Elektrostatyka
electrostatic in Portuguese: Eletrostática
electrostatic in Romanian: Electrostatică
electrostatic in Russian: Электростатика
electrostatic in Slovenian: Elektrostatika
electrostatic in Finnish: Sähköstatiikka
electrostatic in Swedish: Elektrostatik
electrostatic in Ukrainian: Електростатика
electrostatic in Chinese: 靜電學
Synonyms, Antonyms and Related Words
battery-powered, biostatic, dynamoelectric, electric, electric-powered,
electrified,
electrifying,
electrochemical,
electrodynamic,
electrokinetic,
electromechanical,
electrometric,
electromotive,
electropneumatic,
electrothermal,
galvanic, galvanometric, geostatic, hydroelectric, photoelectric, piezoelectric, static, voltaic