User Contributed Dictionary
Noun
chloroplasts- Plural of chloroplast
Extensive Definition
Chloroplasts are organelles found in plant cells
and eukaryotic
algae that conduct photosynthesis.
Chloroplasts absorb light and use it in conjunction with water and
carbon dioxide to produce sugars, the raw material for energy and
biomass
production in all green plants and the animals that depend on them,
directly or indirectly, for food. Chloroplasts capture light energy to conserve free
energy in the form of ATP
and reduce NADP to NADPH through a
complex set of processes called photosynthesis. It is derived from
the Greek words chloros which means green and plast which means
form or entity. Chloroplasts are members of a class of organelles
known as plastids.
Evolutionary origin
Chloroplasts are one of the many unique organelles in the plant cell. They are generally considered to have originated as endosymbiotic cyanobacteria (i.e. blue-green algae). This was first suggested by Mereschkowsky in 1905 after an observation by Schimper in 1883 that chloroplasts closely resemble cyanobacteria. All eukaryote chloroplasts are thought to derive directly or indirectly from a single endosymbiotic event (in the Archaeplastida), except for Paulinella chromatophora, which has recently acquired a photosynthetic cyanobacterial endosymbiont which is not closely related to chloroplasts of other eukaryotes. In that they derive from an endosymbiotic event, chloroplasts are similar to mitochondria but chloroplasts are found only in plants and protista. The chloroplast is surrounded by a double-layered composite membrane with an intermembrane space; it has its own DNA and is involved in energy metabolism. Further, it has reticulations, or many infoldings, filling the inner spaces.In green plants, chloroplasts are surrounded by
two lipid-bilayer
membranes. The inner membrane is now believed to correspond to
the outer membrane of the ancestral cyanobacterium. Chloroplasts
have their own genome, which is considerably reduced
compared to that of free-living cyanobacteria, but the parts that
are still present show clear similarities with the cyanobacterial
genome. Plastids may contain 60-100 genes whereas cyanobacteria
often contain more than 1500 genes. Many of the missing genes are
encoded in the nuclear genome of the host. The transfer of nuclear
information has been estimated in tobacco plants at one gene for every 16000 pollen
grains.
In some algae (such as the heterokonts and other
protists such as Euglenozoa and
Cercozoa),
chloroplasts seem to have evolved through a secondary event of
endosymbiosis, in which a eukaryotic cell engulfed a second
eukaryotic cell containing chloroplasts, forming chloroplasts with
three or four membrane layers. In some cases, such secondary
endosymbionts may
have themselves been engulfed by still other eukaryotes, thus
forming tertiary endosymbionts.
Structure
Chloroplasts are observable morphologically as flat discs usually 2 to 10 micrometer in diameter and 1 micrometer thick. The chloroplast is contained by an envelope that consists of an inner and an outer phospholipid membrane. Between these two layers is the intermembrane space.The material within the chloroplast is called the
stroma, corresponding to the cytosol of the original
bacterium, and contains one or more molecules of small circular
DNA. It also contains ribosomes, although most of its
proteins are encoded by genes contained in the host cell nucleus,
with the protein products transported to the chloroplast.
Within the stroma are stacks of thylakoids, the sub-organelles
which are the site of photosynthesis. The thylakoids are arranged
in stacks called grana (singular: granum). A thylakoid has a
flattened disk shape. Inside it is an empty area called the
thylakoid space or lumen. Photosynthesis takes place on the
thylakoid membrane; as in mitochondrial oxidative phosphorylation,
it involves the coupling of cross-membrane fluxes with biosynthesis via the
dissipation of a proton electrochemical gradient.
Embedded in the thylakoid membrane is the antenna
complex, which consists of proteins, and light-absorbing pigments,
including chlorophyll and carotenoids. This complex
both increases the surface area for light capture, and allows
capture of photons with a wider range of wavelengths. The energy of
the incident photons is absorbed by the pigments and funneled to
the reaction centre of this complex through resonance
energy transfer. Two chlorophyll molecules are then ionised,
producing an excited electron which then passes onto the
photochemical reaction centre.
Transplastomic plants
Recently, chloroplasts have caught attention by developers of genetically modified plants. In certain plant species, such as tobacco, chloroplasts are not inherited from the male, and therefore, transgenes in these plastids cannot be disseminated by pollen. This makes plastid transformation a valuable tool for the creation and cultivation of genetically modified plants that are biologically contained, thus posing significantly lower environmental risks. This biological containment strategy is therefore suitable for establishing the coexistence of conventional and organic agriculture. The reliability of this mechanism has not yet been studied for all relevant crop species. However, the research programme Co-Extra recently published results for tobacco plants, demonstrating that the containment of transplastomic plants is highly reliable with a tiny failure rate of 3 in 1,000,000.References
External links
- Chloroplasts and Photosynthesis: The Role of Light from Kimball's Biology Pages
- Chloroplast, Botany
- Use of chloroplast DNA in studying plant phylogeny and evolution
- 3D structures of proteins associated with thylakoid membrane
- Co-Extra research on chloroplast transformation
chloroplasts in Arabic: صانعات يخضورية
chloroplasts in Bengali: ক্লোরোপ্লাস্ট
chloroplasts in Bulgarian: Хлоропласт
chloroplasts in Catalan: Cloroplast
chloroplasts in Danish: Grønkorn
chloroplasts in German: Chloroplast
chloroplasts in Estonian: Kloroplast
chloroplasts in Spanish: Cloroplasto
chloroplasts in Esperanto: Kloroplasto
chloroplasts in Persian: سبزدیسه
chloroplasts in French: Chloroplaste
chloroplasts in Galician: Cloroplasto
chloroplasts in Korean: 엽록체
chloroplasts in Croatian: Kloroplast
chloroplasts in Indonesian: Kloroplas
chloroplasts in Icelandic: Grænukorn
chloroplasts in Italian: Cloroplasto
chloroplasts in Hebrew: כלורופלסט
chloroplasts in Lithuanian: Chloroplastas
chloroplasts in Hungarian: Kloroplasztisz
chloroplasts in Macedonian: Хлоропласт
chloroplasts in Malay (macrolanguage):
Kloroplas
chloroplasts in Dutch: Bladgroenkorrel
chloroplasts in Japanese: 葉緑体
chloroplasts in Norwegian: Kloroplast
chloroplasts in Occitan (post 1500):
Cloroplast
chloroplasts in Low German: Chloroplast
chloroplasts in Polish: Chloroplast
chloroplasts in Portuguese: Cloroplasto
chloroplasts in Romanian: Cloroplast
chloroplasts in Russian: Хлоропласт
chloroplasts in Simple English:
Chloroplast
chloroplasts in Slovak: Chloroplast
chloroplasts in Slovenian: Kloroplast
chloroplasts in Serbian: Хлоропласт
chloroplasts in Serbo-Croatian: Hloroplast
chloroplasts in Sundanese: Kloroplas
chloroplasts in Finnish: Viherhiukkanen
chloroplasts in Swedish: Kloroplast
chloroplasts in Vietnamese: Lục lạp
chloroplasts in Turkish: Kloroplast
chloroplasts in Ukrainian: Хлоропласт
chloroplasts in Chinese: 叶绿体