Dictionary Definition
aperture
Noun
1 a device that controls amount of light
admitted
2 a natural opening in something
3 an man-made opening; usually small
User Contributed Dictionary
Pronunciation
- IPA: / ˈæp.ə.tʃə(r), ˈæp.ə.tjʊə(r)/
- IPA: WEAE /ˈæp.ɚ.tʃɚ/
Noun
- An opening; an open space; a gap, cleft, or chasm; a passage
perforated; a hole; as, an aperture in a wall.
- An aperture between the mountains. --Gilpin.
- The back aperture of the nostrils. --Owen.
- An aperture between the mountains. --Gilpin.
- Something which restricts the diameter of the light path through one plane in an optical system.
- In the context of "astronomy|photography": The diameter of the aperture (in the sense above) which restricts the width of the light path through the whole system. For a telescope, this is the diameter of the objective lens. e.g. a telescope may have a 100 cm aperture.
Usage notes
The aperture of microscopes is often expressed in
degrees, called also the angular
aperture, which signifies the angular breadth of the pencil of
light which the instrument transmits from the object or point
viewed; as, a microscope of 100° aperture.
Translations
opening
something which restricts the diameter of the
light path through one plane in an optical system
- Czech: clona
- German: Blende
- Polish: przesłona
- Portuguese: abertura
diameter of the aperture (in the sense above)
- German: Blendenzahl
- Polish: przysłona
- Portuguese: abertura
Italian
Noun
aperture- Plural of apertura
Extensive Definition
In optics, an aperture is a hole or
an opening through which light is admitted. More specifically, the
aperture of an optical system is the opening that determines the
cone angle of a bundle of rays that
come to a focus in
the image
plane. The aperture determines how collimated the admitted rays
are, which is of great importance for the appearance at the image
plane. If the admitted rays also pass through a lens, highly
collimated rays (narrow aperture) will result in sharpness at the
image plane, while uncollimated rays (wide aperture) will result in
sharpness for rays with the right focal length only. This means
that a wide aperture results in an image that is sharp around what
the lens is focusing on and blurred otherwise. Obviously, the
aperture also determines how many of the incoming rays that are
actually admitted and thus how much light that reaches the image
plane (the narrower the aperture, the darker the image).
An optical system typically has many openings, or
structures that limit the ray bundles (ray bundles are also known
as pencils of light). These structures may be the edge of a
lens
or mirror, or a ring or
other fixture that holds an optical element in place, or may be a
special element such as a diaphragm
placed in the optical path to limit the light admitted by the
system. In general, these structures are called stops, and the
aperture stop is the stop that determines the ray cone angle, or
equivalently the brightness, at an image point.
In some contexts, especially in photography and astronomy, aperture refers to
the diameter of the aperture stop rather than the physical stop or
the opening itself. For example, in a telescope the aperture stop is
typically the edges of the objective
lens or mirror (or of the mount that holds it). One then speaks
of a telescope as having, for example, a 100 centimeter aperture.
Note that the aperture stop is not necessarily the smallest stop in
the system. Magnification and demagnification by lenses and other
elements can cause a relatively large stop to be the aperture stop
for the system.
Sometimes stops and diaphragms are called
apertures, even when they are not the aperture stop of the
system.
The word aperture is also used in other contexts
to indicate a system which blocks off light outside a certain
region. In astronomy for example, a photometric
aperture around a star
usually corresponds to a circular window around the image of a star
within which the light intensity is summed.
Application
The aperture stop is an extremely important element in most optical designs. Its most obvious feature is that it limits the amount of light that can reach the image/film plane. This can either be undesired, as in a telescope where one wants to collect as much light as possible; or deliberate, to prevent saturation of a detector or overexposure of film. In both cases, the size of the aperture stop is constrained by things other than the amount of light admitted, however:- The size of the stop is one factor that affects depth of field. Smaller stops produce a longer depth of field, allowing objects at a wide range of distances to all be in focus at the same time.
- The stop limits the effect of optical aberrations. If the stop is too large, the image will be distorted. More sophisticated optical system designs can mitigate the effect of aberrations, allowing a larger stop and therefore greater light collecting ability.
- The stop determines whether the image will be vignetted. Larger stops can cause the intensity reaching the film or detector to fall off toward the edges of the picture, especially when for off-axis points a different stop becomes the aperture stop by virtue of cutting off more light than did the stop that was the aperture stop on the optic axis.
- A larger aperture stop requires larger diameter optics, which are heavier and more expensive.
In addition to an aperture stop, a photographic
lens may have one or more field stops, which limit the system's
field
of view. Outside the angle of view, a field stop may become the
aperture stop, causing vignetting; vignetting is
only a problem if it happens inside the desired field of
view.
The pupil of the eye is its aperture; the iris is the
diaphragm that serves as the aperture stop. Refraction in the
cornea causes the
effective aperture (the entrance
pupil) to differ slightly from the physical pupil diameter. The
entrance pupil is typically about 4 mm in diameter,
although it can range from 2 mm () in a brightly lit place
to 8 mm () in the dark.
In astronomy, the diameter of the aperture stop
(called the aperture) is a critical parameter in the design of a
telescope. Generally,
one would want the aperture to be as large as possible, to collect
the maximum amount of light from the distant objects being imaged.
The size of the aperture is limited, however, in practice by
considerations of cost and weight, as well as prevention of
aberrations (as mentioned above).
In photography
The aperture stop (not to be confused with "f-stop", see below) of a photographic lens can be adjusted to control the amount of light reaching the film or image sensor. In combination with variation of shutter speed, the aperture size will regulate the film's degree of exposure to light. Typically, a fast shutter speed will require a larger aperture to ensure sufficient light exposure, and a slow shutter speed will require a smaller aperture to avoid excessive exposure.A device called a diaphragm
usually serves as the aperture stop, and controls the aperture. The
diaphragm functions much like the iris of
the eye—it
controls the effective diameter of the lens opening.
Reducing the aperture size increases the depth of
field, which describes the extent to which subject matter lying
closer than or farther from the actual plane of focus appears to be
in focus. In general, the smaller the aperture (the larger the
number), the greater the distance from the plane of focus the
subject matter may be while still appearing in focus.
The lens aperture is usually specified as an
f-number,
the ratio of focal length
to effective aperture diameter. A lens typically has a set of
marked "f-stops" that the f-number can be set to. A lower f-number
denotes a greater aperture opening which allows more light to reach
the film or image sensor. The photography term "one f-stop" refers
to a factor of √2 (approx. 1.41) change in f-number, which in turn
corresponds to a factor of 2 change in light intensity.
Aperture
priority refers to a shooting mode used in semi-automatic
cameras. It allows the photographer to choose an aperture setting
and allow the camera to decide the shutter speed and sometimes ISO
sensitivity for the correct exposure. This is sometimes referred to
as Aperture Priority Auto Exposure, A mode, Av mode, or semi-auto
mode.
Maximum and minimum apertures
The specifications for a given lens typically
include the minimum and maximum apertures. These refer to the
maximum and minimum f-numbers the lens can be set at to achieve,
respectively.
A typical lens will have an f-number range from
16 (small aperture) to 2 (large aperture) (these values vary). The
maximum aperture (minimum f-number) tends to
be of most interest (and is always included when describing a
lens). This value is also known as the lens speed,
because it is proportional to the square of accepted light, and
thus inversely proportional to the square of required exposure time
(i.e. using a lens with f/2, one can take pictures at one quarter
of the exposure time necessary using a f/4 lens). Professional
lenses for 35mm cameras can have f-numbers as low as 1.0, while
professional lenses for some movie cameras can have f-numbers as
low as 0.75 (very large relative aperture). These are known as
"fast" lenses because they allow much more light to reach the film
and therefore reduce the required exposure time. Stanley
Kubrick's film Barry Lyndon
is notable for having scenes shot with the largest relative
aperture in film history: 0.7.
Lenses which have a fixed focal length (FFL) and
large aperture are favored especially by photojournalists who often
work in dim light, have no opportunity to introduce supplementary
lighting, and need to capture fast breaking events.
Zoom lenses
typically have a maximum aperture (minimum f-number) of 2.8
to 6.3 through their range. A very fast zoom lens will be constant
2.8 or 2, which means the relative aperture will stay the same
throughout the zoom range. A more typical consumer zoom will have a
variable relative aperture, since it is harder and more expensive
to keep the effective aperture proportional to focal length at long
focal lengths; 3.5 to 5.6 is an example of a common variable
aperture range in a consumer zoom lens.
Aperture area
The amount of light captured by a lens is
proportional to the area of the aperture, equal to:
- \mathrm = \pi \left(\right)^2
Where f is focal length
and N is the f-number.
The focal length value is not required when
comparing two lenses of the same focal length; a value of 1 can be
used instead, and the other factors can be dropped as well, leaving
area proportion to the reciprocal square of the f-number N.
If two cameras of different format sizes and
focal lengths have the same angle of
view, and the same aperture area, they gather the same amount
of light from the scene. The relative focal-plane illuminance,
however, depends only on the f-number N, independent of the focal
length, so is less in the camera with the larger format, longer
focal length, and higher f-number.
In scanning or sampling
The terms scanning aperture and sampling aperture
are often used to refer to the opening through which an image is
sampled, or scanned, for example in a Drum
scanner, an image
sensor, or a television pickup apparatus. The sampling aperture
can be a literal optical aperture, that is, a small opening in
space, or it can be a time-domain aperture for
sampling a signal waveform.
For example, film grain is
quantified as graininess via a measurement of film density
fluctuations as seen through a 0.048 mm sampling aperture.
References
External links
aperture in Czech: Clona
aperture in Danish: Blænde
aperture in German: Blende (Optik)
aperture in Spanish: Apertura
aperture in Esperanto: Relativa truo de
objektivo
aperture in French: Ouverture
(photographie)
aperture in Korean: 조리개
aperture in Japanese: 絞り (光学)
aperture in Dutch: Diafragma_(optica)
aperture in Norwegian: Blender
aperture in Polish: Apertura
aperture in Portuguese: Abertura (óptica)
aperture in Russian: Относительное
отверстие
aperture in Slovak: Clona
aperture in Finnish: Apertuuri
aperture in Ukrainian: Апертура
aperture in Vietnamese: Độ mở
Synonyms, Antonyms and Related Words
access,
aisle, alley, ambulatory, arcade, artery, avenue, bore, breach, break, broaching, cavity, channel, chasm, check, chink, clearing, cleft, cloister, colonnade, communication, conduit, connection, corridor, covered way, crack, crevice, cut, defile, disclosure, discontinuity, exit, fenestra, ferry, fissure, fistula, fontanel, foramen, ford, gallery, gap, gape, gash, gat, gulf, hiatus, hole, hollow, inlet, interchange, intersection, interstice, interval, junction, lacuna, lane, laying open, leak, opening, opening up, orifice, outlet, overpass, pass, passage, passageway, perforation, pinhole, pore, portico, prick, puncture, railroad tunnel,
rupture, slash, slit, slot, space, split, stoma, throwing open, traject, trajet, tunnel, uncorking, underpass, unstopping, vent, yawn